Eye Movements:

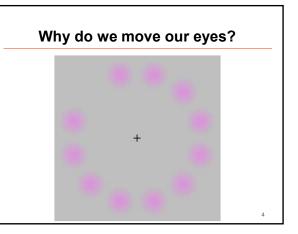
Neurology, Abnormalities, Testing

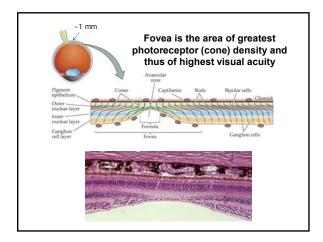
Dr. Miriam Spering Assistant Professor UBC Ophthalmology & Visual Sciences

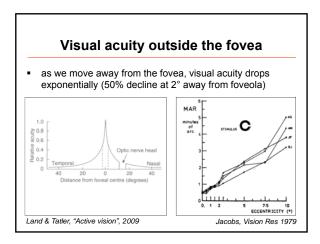
Division of Basic Science

Session Objectives

The acquired knowledge and skills directly relate to the general objectives for the Ophthalmology rotation. The student shall be able to:

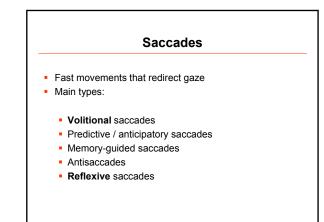

- Identify different types of eye movements and differentiate between normal and
- abnormal eye movement findings. [General Objectives, ci] Perform an eye movement exam. [Essential Objectives, ci] Describe the nature of strabismus and amblyopia and be able to explain these to a patient or parent of a patient. [Essential Objectives, Knowledge, j)]

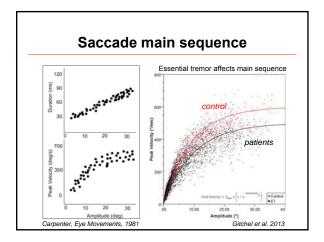

More specifically, the student shall:

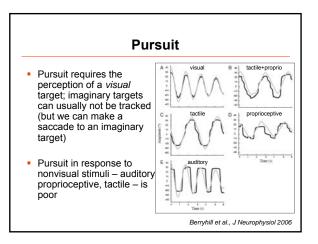

- Know the characteristic features of saccades, pursuit, vergence, fixational eye movements, VOR and OKN.
- Be able to name the extraocular muscles and their primary and secondary functions. Know the basic brainstem mechanisms driving saccadic eye movements.
- Know the unilateral or alternating cover test, its general principles, and be able to
- perform it on a patient.
- Be able to identify different types of ocular deviation (tropias and phorias), possible perceptual consequences and clinical management.

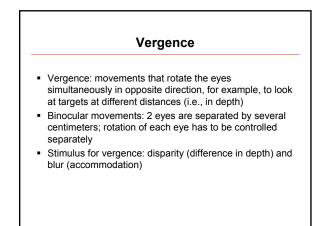
Content

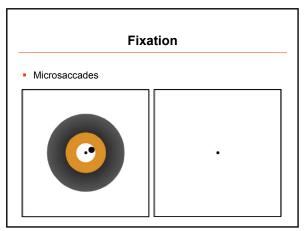
- Human eye movement repertoire
- Neurology of eye movements
- Common eye movement abnormalities
 - Clinical skills I: conducting an eye movement exam
- Strabismus and amblyopia
 - > Clinical skills II: detecting strabismus, measuring acuity and stereovision

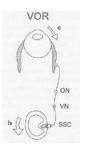






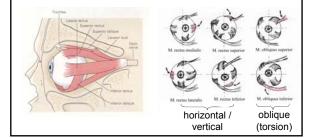


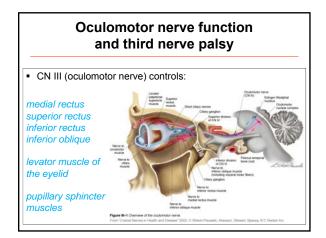

Leigh & Zee, Neurology of Eye Movements, 2006



Vestibulo-ocular reflex (VOR)

- Compensation for head movements
- Head movements are detected by the vestibular organ in the inner ear; this organ is specialized to detect movement along all axes
- Acceleration in any given plane will activate extraocular muscles to counteract this movement

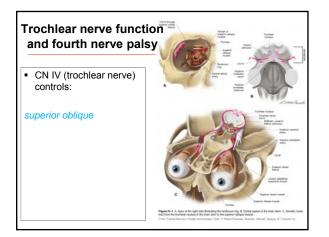

<text><text>

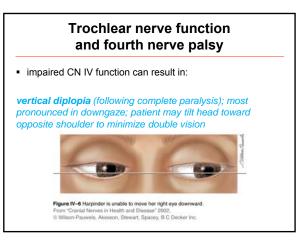

Content

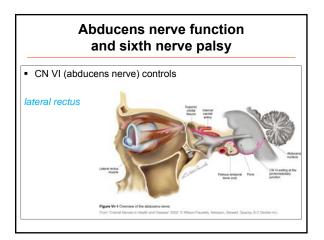
- Human eye movement repertoire
- Neurology of eye movements
- Common eye movement abnormalities
 - Clinical skills I: conducting an eye movement exam
- Strabismus and amblyopia
 - Clinical skills II: detecting strabismus, measuring acuity and stereovision

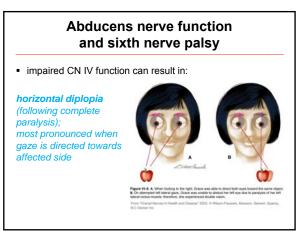
Orbital mechanics – how does the eye move?

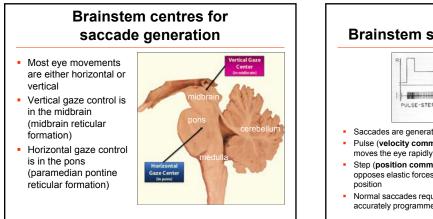
 3 pairs of extraocular muscles move the eye and hold it in place at eccentric positions

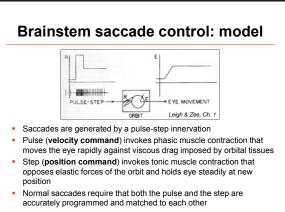


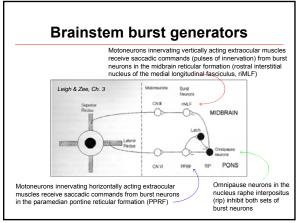

Oculomotor nerve function and third nerve palsy

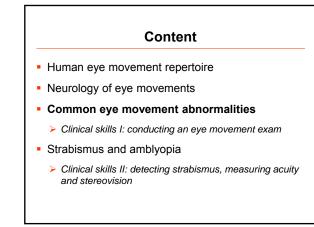

• impaired CN III function can result in:

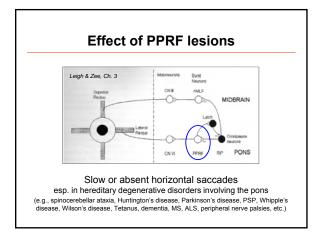

droopy eyelids (ptosis)

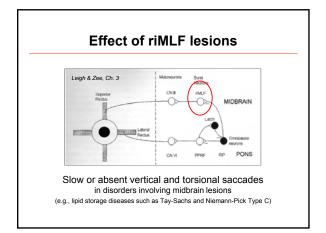

- dilated and poorly reactive pupil
- horizontal and vertical diplopia
- impaired ability to move the eye up (elevate), down (depress) and in (nasal); eye will turn out and down

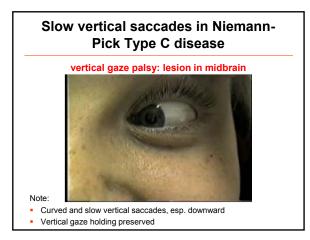


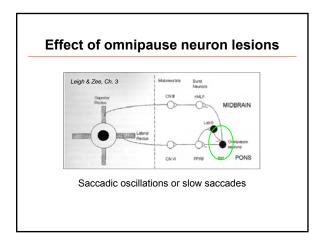


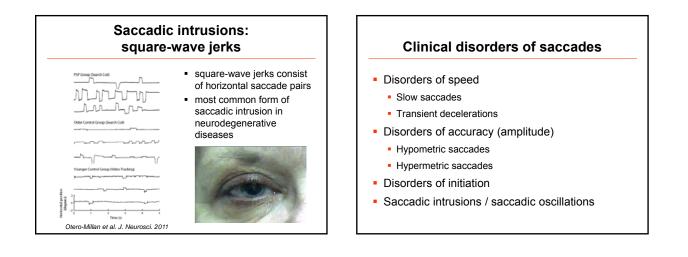


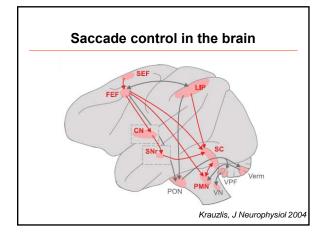


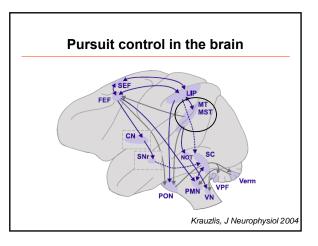


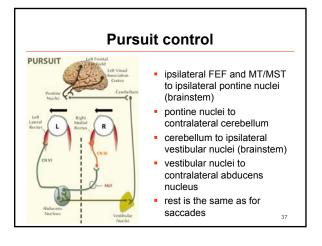




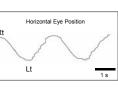


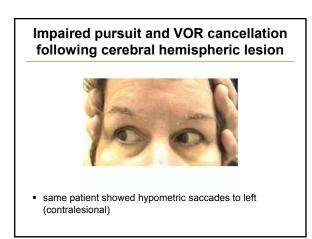


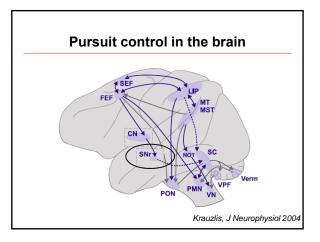


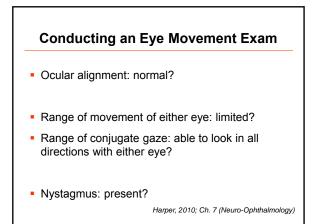


 Oscillations occur in all directions (opsoclonus), not just along the horizontal (ocular flutter)






Impaired pursuit and VOR cancellation following cerebral hemispheric lesion



- impaired pursuit (jerky) and VOR cancellation (note saccades) to right (ipsilateral to side of lesion)
- same patient also showed hypometric saccades to left (contralesional; not shown)

Conducting an Eye Movement Exam

- Ocular alignment: normal?
- Fixation: stable?
- Range of movement of either eye: limited?
- Range of conjugate gaze: able to look in all directions with either eye?
- Saccades / pursuit / vergence / VOR
- Nystagmus: present?

Harper, 2010; Ch. 7 (Neuro-Ophthalmology)

Content

- Human eye movement repertoire
- Neurology of eye movements
- Common eye movement abnormalities
 - > Clinical skills I: conducting an eye movement exam
- Strabismus and amblyopia
 - Clinical skills II: detecting strabismus, measuring acuity and stereovision

Strabismus

List the clinical features of strabismus:

eye misalignment: both eyes cannot be directed toward an object of regard

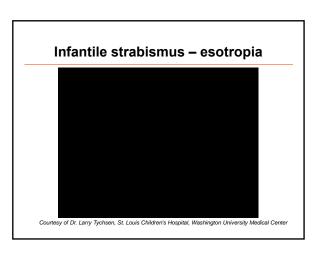
other features are: loss of binocular sensitivity, diplopia (in adult-onset strabismus), unstable gaze, impaired eye movements

Types of strabismus

- Concomitant strabismus (non-paralytic): angle / degree of misalignment is equal in all directions; normal extraocular muscle functioning
- Incomitant strabismus (paralytic): degree of misalignment varies with direction of gaze; usually indicates a neurological disorder (such as third nerve paresis)

Other subtypes

- Horizontal: exotropia (outwards, away from midline) and
- esotropia (inwards, towards the nose)


 Vertical (less common): hypertropia (upward) and hypotropia (downward)

 Conditions associated with strabismus: esophoria & exophoria

 esophoria: latent tendency for eye misalignment that becomes manifest only if binocular vision is interrupted (e.g., by alternating cover test)

 Official offic

inwards (esodeviation)

Amblyopia

What is amblyopia?

reduced visual acuity in one eye that cannot immediately be corrected by lenses and occurs in the absence of a detectable organic disease

What causes amblyopia?

deprivation of normal vision for a prolonged period during development before the age of 8 years

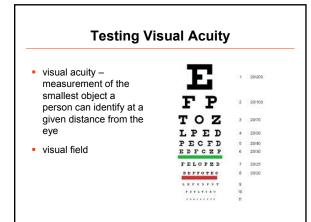
- strabismic amblyopia (40%)
- refractive amblyopia
- a combination of both
- · form-deprivation amblyopia due
- to congenital cataract, corneal scarring, or ptosis

How is amblyopia treated?

- remove amblyogenic factors
 - anisometropic: refraction–initially for 4 weeks
 strabismic amblyopia: patching, surgery
 - spared stereopsis may predict successful surgery Kim et al. 2014
- occlude clinically unaffected fellow eye to improve visual acuity (TRADITIONALLY before the age of 8 years)
 - no definitive guidelines for occlusion therapy (2 hrs to all day)
 - patch until visual acuity is equal OR until reverse amblyopia in the fellow eye
- topical atropine is an option when patching compliance is poor: higher acceptability, lower cost, slightly slower rate of improvement

Clinical management

eye misalignment

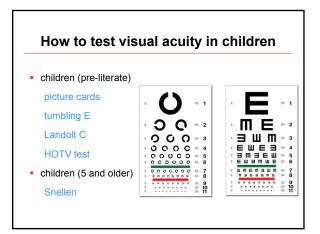

- surgery (shortening, lengthening or repositioning extraocular muscles)
- glasses
- vision therapy

amblyopia

- patching (for more information see also <u>http://pedig.jaeb.org/</u> - webpage of the Pediatric Eye Disease Investigator Group)
- vision therapy

Content

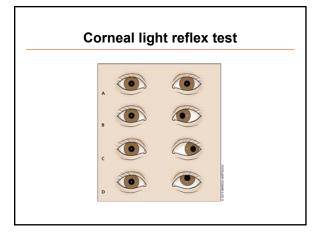
- Human eye movement repertoire
- Neurology of eye movements
- Common eye movement abnormalities
 - > Clinical skills I: conducting an eye movement exam
- Strabismus and amblyopia
 - Clinical skills II: detecting strabismus, measuring acuity and stereovision



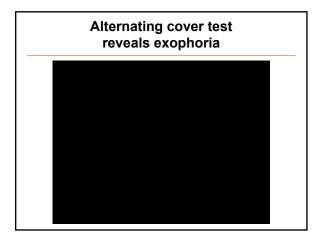
How to test visual acuity in children

newborns

general ocular status (light reflex, pupillary testing, fundus)


- infants 2 y/o
 - assess basic visual function
 - ocular motility

Color and stereovision


- color vision, e.g., Ishihara plates (an online example can be found here: http://www.color-blindness.com/ishihara-38-plates-cvd-test)
- stereo vision, e.g., Randot test or Stereo Fly test for fine, local stereopsis

Cover tests

- Single cover (cover-uncover) test:
 - usually performed first
 - the presence of any movement in a single cover test (in the uncovered eye!) indicates a *tropia*; i.e., contralateral eye will move to pick up fixation when the fixing eye is occluded
 - in the case of *phoria* the uncovered eye does not move but the covered eye moves under the occluder and returns to straight position when occluder is removed
- Alternating cover test (ACT)
- performed after single cover test
 - switch between eyes to break fusion, cover each eye for several seconds to allow non-occluded eye to p/u fixation

Thank you!

Come visit our lab: http://visualcognition.ca/spering

ICORD, Rooms 4355/4355A

mspering@mail.ubc.ca