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Weighted linear cue combination with possibly correlated error
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Abstract

We test hypotheses concerning human cue combination in a slant estimation task. Observers repeatedly adjusted the slant of a

plane to 75�. Feedback was provided after each setting and the observers trained extensively until their setting error stabilized. The

slant of the plane was defined by either linear perspective alone (a grid of lines) or texture gradient alone (diamond-shaped texture

elements) or the two cues together. We chose a High and Low variance version of each cue type and measured setting variability in

four single-cue conditions (Low, High for each cue) and in the four possible combined-cue conditions (Low–Low, Low–High, etc.).

We compared performance in the combined-cue conditions to predictions based on single-cue performance. The results were

consistent with a linear combination of estimates from cues. Six out of eight observers did better with combined cues than with either

cue alone. For three observers, performance was consistent with optimal combination of uncorrelated cues. Three other observers�
results were also consistent with optimal combination, but with the assumption that internal cue estimates were correlated. The

remaining two observers were consistent with sub-optimal cue combination.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Cue combination; Slant perception; Pictorial depth cues; Correlated cues
1. Introduction

Many visual tasks involve estimation of object

properties such as size, shape, depth, orientation, and
location. For each of these properties, there is typically

more than one method to derive an estimate of the

property from available visual information. We refer to

these distinct methods as cues. In estimating depth, for

example, human observers can use any of several dif-

ferent depth cues (see, e.g., Kaufman, 1974). Multiple

visual cues are available for the localization of simple

luminance-defined features (Watt, Morgan, & Ward,
1983) and of texture-defined edges (Landy & Kojima,

2001). In Fig. 1, we present a concrete example where an

estimate of the slant of the plaza with respect to the

observer�s line of sight could be based on either a texture

gradient cue or a linear perspective cue.

When there are multiple cues available, it is of interest

to determine whether observers combine information

from the cues and what rule of combination they use. If
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we denote the estimates derived from each of n cues by

random variables S1; S2; . . . ; Sn, then the problem of cue

combination is to reduce these n estimates to one esti-

mate, S. The most common cue combination model in
the literature is a weighted linear combination

Sw ¼
Xn
i¼1

wiSi; ð1Þ

where w1;w2; . . . ;wn are non-negative weights, con-

strained to sum to 1. We assume that the expected value

of each cue in isolation is the true value of the property,

s, i.e. the estimate available from each cue is unbiased.

Because the weights are constrained to sum to 1, the

combined estimate is also unbiased. The variance of the

estimator Sw is determined by the choice of weights and

the variances of the individual cues, VarðSiÞ ¼ r2
i > 0. If

the cues are uncorrelated, the choice of weights that

minimizes the variance of the combined estimate is

wi ¼ r�2
i

Xn
j¼1

r�2
j

,
; ð2Þ

a result due to Cochran (1937). If we define the reli-

ability of a cue to be the reciprocal of its variance,
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Fig. 1. Piazza San Marco, Venice. Two pictorial cues are available to define the slant and tilt of the plaza with respect to the line-of-sight of the

camera, linear perspective and the texture gradient formed by humans, pigeons, other miscellaneous objects, and their shadows.
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ri ¼ r�2
i , then the combined estimate has minimum

variance precisely when the weight assigned to each cue

is proportional to its reliability. This combination rule is

a form of weak fusion, in the terminology of Clark and
Yuille (1990) (see Landy, Maloney, Johnston, & Young,

1995). With the optimal weights in Eq. (2), the reliability

of the combined estimate Sw is

r ¼
Xn
i¼1

ri; ð3Þ

and it is evident that the reliability of the combined es-
timate is as great or greater than the reliability of any

single cue.

In this paper, we are interested in studying cue

combination as an ideal observer problem without the

strong assumptions that cues are Gaussian random

variables or that they are uncorrelated. In Appendix A,

we derive the optimal choice of weights for linear cue

combination when the internal estimates corresponding
to the cues are correlated. We present the result for the

case where there are only two cues in the next section.

We report an experiment where observers were asked to

estimate surface slant using two pictorial cues: linear

perspective and texture gradient. The purpose of our

experiment was to compare human performance in

single-cue and combined-cue conditions, and to test

whether human cue combination is optimal for the
conditions of our experiment. The pattern of optimal

behavior is different if cues are correlated, and it de-

pends on the value of correlation. The design of the
experiment allows us to test whether the two cues are

correlated, whether human cue combination is optimal,

and whether a linear combination rule is an appropriate

model for human cue combination.
As will become clear, not all our observers� behavior

was consistent with optimal cue combination. We would

also like to test whether these sub-optimal observers

benefited from combining cues in the sense that per-

formance with combined cues exceeded performance

with either cue alone.

The weighted linear rule with weights proportional to

cue reliability satisfies other criteria of statistical opti-
mality. We did not have to assume that the uncorrelated

cues are Gaussian random variables to derive Eq. (2)

but, if they are, there is no unbiased non-linear rule that

has lower variance. In the Gaussian case, Eq. (1) is also

the maximum likelihood estimate of s, and, if we in-

troduce a Gaussian prior on the unknown parameter, it

is of the same form as the maximum a posterior (MAP)

estimate but with an additional term S0 (the mean of the
prior distribution) introduced into the weighted sum. All

of these results are derived in Appendices A and B.
1.1. Previous experimental work

There is considerable evidence suggesting that human

observers do use a weighted linear combination rule
when multiple cues are available, and that the weights

depend on cue reliability. Young, Landy, and Maloney

(1993) found that texture and stereo cues to depth were
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combined using a weighted average and that the weights

changed in the appropriate directions when noise was

added to each cue. Johnston, Cumming, and Landy

(1994) found weighted averaging behavior for combi-

nations of motion and stereo cues to depth. Ghahra-

mani, Wolpert, and Jordan (1997) looked at the

combination of auditory and visual information for lo-

calization. Their results were consistent with weights
based on reliability, although visual reliability was so

much higher than auditory in their experiment that it

was impossible to assess whether weights were optimal.

Van Beers, Sittig, and Denier van der Gon (1998,

1999) studied combinations of visual and proprioceptive

cues to location within a plane. They indirectly esti-

mated the reliabilities of vision and proprioception

alone (Van Beers et al., 1998). They found that vision
was more reliable for width than depth discriminations,

and that proprioception was more reliable tangential to

the forearm than radially along it. Because these two

discrimination ellipses are typically not aligned, a max-

imum likelihood estimator that assumes Gaussian

individual cue estimates predicts that, in cue conflict

conditions, estimates should lie on a curve (i.e., not a

straight line) between the visually and proprioceptively
defined locations. They found weak evidence for this

qualitative prediction.

These studies did not separately measure the reli-

ability of single cues. Instead, they varied the depth that

each cue signaled and analyzed the effect of changing a

cue on the observer�s response across many trials,

without testing whether observers use correct weights

(Eq. (2)) in combining cues. Moreover, while the studies
just described are all consistent with the claim that ob-

servers used a weighted linear rule to combine cues, they

are also consistent with an alternative ‘‘cue-switching’’

strategy. The cue-switching observer uses only one cue

on each trial, but varies the proportion of times each cue

is used as a function of its reliability. When observers�
judgments are averaged across trials, this cue-switching

strategy would resemble the results just cited in many
respects. However, the performance of a cue-switching

observer with combined cues could never exceed his or

her performance with the more reliable of the available

cues in isolation. Further, a cue-switching strategy

would lead to flattened discrimination psychometric

functions as cue conflicts increase, which was not found

in these studies (see Landy & Kojima, 2001, for further

discussion).
Landy and Kojima (2001) studied the localization of

a texture-defined edge cued by changes in two textural

features (e.g., local orientation and scale). Performance

was measured both with edges defined by pairs of cues

and edges defined by each cue alone. The single-cue data

provide an estimate of the reliability of the individual

cues which, in turn, provides an estimate of the optimal

cue weights to use for the two-cue stimuli. In making
this prediction, Landy and Kojima assumed that esti-

mates of localization from the two cues could be treated

as uncorrelated random variables. An ideal cue combi-

nation model was fit to the entire data set, and it pre-

dicted many aspects of the data quite well.

Ernst and Banks (2002) used a similar strategy for the

case of visual and haptic estimation of the size of an

object. Single-cue studies were used to estimate the re-
liability of the two modalities alone. The cue weights

and the variability in the two-cue conditions were well-

predicted by the individual cue reliabilities and the ideal

observer model. This successful prediction held even as

the visual reliability was manipulated by the addition of

visual noise to the stimuli. The amount of noise was

varied within a single block of trials. The data were

consistent with a dynamic choice of cue weights, on a
trial-by-trial basis, where the choice of visual weight

depended on the visual noise presented on any given

trial.

Using a discrimination paradigm rather than an es-

timation task, Hillis, Ernst, Banks, and Landy (2002)

found evidence for cue combination using an optimal

choice of weights. This occurred both for combinations

of haptic and visual cues to size (as in Ernst & Banks,
2002) as well as for combinations of stereo and texture

cues to surface slant. A similar study by Knill and

Saunders (2002) confirmed that observers use optimal

weights for combining stereo and texture cues to slant.

Jacobs (1999) examined cue combination for depth

estimates based on texture and motion. The combined-

cue stimuli were rendered elliptical cylinders defined by

a texture cue (circles placed randomly on the surface of
the cylinder) and a motion cue (smooth movement of

the texture elements within the surface). Single-cue

stimuli consisted either of static texture or dots moving

within the surface of the cylinder. Observers indicated

perceived depth by adjusting an ellipse until it appeared

equal in shape to the perceived cross-section of the

cylinder. The variability for combined-cue stimuli was

somewhat lower than for single-cue stimuli (although
not always). A scatterplot of depth predicted by optimal

weighted cue combination (using the single-cue results)

versus perceived combined-cue depth showed high cor-

relation, although much of that was due to the wide

variation in portrayed depth. Better scatterplots resulted

when the prediction also included a prior bias for cir-

cularity but, all in all, this study provides scant evidence

of optimal weighting by observers.

1.2. Cue combination with correlated cues

An assumption shared by all of the above-mentioned

studies is that cues are uncorrelated. This assumption is
plausible when cues are drawn from distinct modalities

as in Ernst and Banks (2002). Visual cues, however, are

all based on the same retinal image, and certainly share
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at least one noise source, the Poisson statistics of the

retinal quantum catch. They may share sources of neu-

ral noise as well. We think of cues as neatly modularized

in the stimulus and in the neural processing that follows.

But, binocular disparity and motion are often both rel-

evant for the responses of neurons (e.g., in cortical area

MT) even though we think of stereo and motion as

separate depth cues. Similarly, V1 neurons are often
tuned for both orientation and spatial frequency even

though they were treated as separate ‘‘cues’’ by Landy

and Kojima (2001). Of course, even when cues are based

on the same retinal information, they may still be un-

correlated particularly if the visual system reorganizes

itself so as to de-correlate cues (Barlow, 1989; Barlow &

F€ooldi�aak, 1989).
2. Combining correlated cues

In this section, we present basic results for weighted

linear cue combination for two cues. In Appendix A, we

derive these results for n cues. Here, we can set w1 ¼ w,
and then w2 ¼ 1� w. When the two cues, S1 and S2, are
uncorrelated, the reliability of a weighted linear combi-

nation of the two cues is

rw ¼ ½w2r�1
1 þ ð1� wÞ2r�1

2 ��1
: ð4Þ

We plot rw versus w in Fig. 2A. Note, first of all, that

rw ¼ r1 when w ¼ 1, and that rw ¼ r2 when w ¼ 0. In

these two cases, the observer has discarded one of

the cues and the reliability is that of the other cue. The
smooth curve reaches a maximum of r1 þ r2 when the

weights are chosen to minimize variance and, accord-

ingly, maximize reliability. Notice that, even if the ob-

server fails to choose exactly the optimal weights, the
w
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Fig. 2. Reliability of the weighted linear combinations of cues. The re-

liability rw of the weighted linear combination wS1 þ ð1� wÞS2 is

plotted versus w for hypothetical cue S1 with reliability r1 ¼ 1 and

hypothetical cue S2 with reliability r2 ¼ 2. Reliability is the reciprocal

of variance. (A) The cues are uncorrelated ðq ¼ 0Þ. The maximum

value of rw is the sum r1 þ r2 ¼ 3. It is marked on the plot. (B) The

correlation between the cues is q ¼ 0:3.
reliability of the combined-cue estimate is higher than

the reliability of either cue alone over a wide range of

weights. These results indicate that the observer can

benefit from cue combination even if his or her knowl-

edge of the reliabilities of the available cues is imprecise.

There are several papers in the statistical literature dis-

cussing conditions under which Gaussian cue combi-

nation based on imprecise estimates of cue reliabilities is
beneficial (Cohen & Sackrowitz, 1974; Graybill & Deal,

1959; Zacks, 1966).

If the two cues S1 and S2 are correlated with corre-

lation q, the optimal choice of weights in Eq. (1) is given

by the formula

w ¼ r01
r01 þ r02

; ð5Þ

where r0i ¼ ri � q
ffiffiffiffiffiffiffiffi
r1r2

p
, i ¼ 1; 2 is the corrected reliability

of the cue, discounted for correlation. If the correlation

is zero, then Eq. (5) reduces to Eq. (2).

The reliability of the weighted linear estimate in the

correlated case is

rw ¼ ½w2r�1
1 þ ð1� wÞ2r�1

2 þ 2qwð1� wÞðr1r2Þ�1=2��1
:

ð6Þ
We plot rw versus w in Fig. 2B for the same reliabilities

r1 and r2 as in Fig. 2A, but now with q ¼ 0:3. Note, first

of all, that the maximum possible reliability is less than

in Fig. 2A even though the reliabilities of the cues are
unchanged. The effect of correlation is always to reduce

the maximum possible reliability when weights are

constrained to be non-negative and to sum to 1. 1

If we substitute the optimal values for the weights, the

resulting optimal reliability is

r ¼ r1 þ r2 � 2q
ffiffiffiffiffiffiffiffi
r1r2

p

1� q2
: ð7Þ

When q ¼ 0, Eq. (6) reduces to Eq. (4), and Eq. (7) re-

duces to Eq. (3).
3. Experimental implications

In Fig. 3, we summarize the possible outcomes of an

experiment in which we measure the reliability of two

cues, r1 and r2, and the reliability of the two cues com-

bined, rc. Assume, for convenience, that r1 < r2. The

schematic in Fig. 3 is a caricature of Fig. 2A. Solid

horizontal lines mark r1 and r2. Consider the possible
values that rc can take on if the two cues are combined
1 It is possible to find reliabilities r1, r2 and a value of correlation

q such that the maximum possible reliability of a weighted linear

combination of two cues with these reliabilities and correlation exceeds

that achievable with two uncorrelated cues with the same reliabilities.

In this case, one of the weights must be negative. We discuss this case

in Appendix A.
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Fig. 3. A reliability plot. The plot summarizes the outcome of two

single-cue conditions and the combined-cue condition. Two dark

horizontal lines mark r1 and r2, the reliabilities of the two single cues.

A dotted line marks r1 þ r2, the maximum reliability achievable by a

weighted linear combination of two uncorrelated single cues. A black

dot marks the observer�s reliability in the combined-cue condition. The

regions of the plot are labeled A, B, C, and D. If the black dot falls into

regions A or D, then the observer�s performance is inconsistent with a

weighted linear combination of cues with non-negative weights. If it

falls in C, then the observer�s reliability with two cues is greater than it

would be with either cue alone, evidence that cue combination is oc-

curring. The curved line is a schematic of the curve in Fig. 2A showing

how the reliability of a weighted linear combination rule varies with

weight.
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by a weighted linear combination with non-negative

weights summing to 1. The minimum possible value for

rc is r1 and this occurs when the weights applied to the

two cues are 1 and 0. The maximum possible value,
if the cues are uncorrelated, is r1 þ r2 and we have

marked this maximum with a dashed horizontal line.

The reliability of a weighted cue combination with non-

negative weights summing to 1 must fall between r1 and
r1 þ r2.

Consequently, if the observed value of rc falls outside
this region, we can reject the hypothesis that the cues are

combined by a weighted linear combination rule with
non-negative weights. The rejection region is shaded in

the diagram. If rc falls in the lower region (Region A),

then the combined-cue estimate is worse than either cue

alone which is not possible with a weighted linear

combination rule with non-negative weights. The cues

are interfering with one another when both are present.

If rc falls in the upper rejection region (Region D), then

the outcome is too reliable to be the result of a weighted
linear combination of the two cues. If the distribution of

the cues is Gaussian, then this cannot happen. But with

other distributions there could be non-linear rules where

this is possible (Appendix B).

If rc falls into Region B, the combined-cue reliability

falls between the reliabilities of the cues in isolation.

This outcome is consistent with a weighted linear com-

bination but with a choice of weights that is distinctly
sub-optimal. The observer would be better off ignoring

the less reliable cue.
Suppose now that rc falls into the interior of the re-

gion labeled C: r2 < rc < r1 þ r2. The reliability of the

combined cues is greater than that of either cue alone,

demonstrating that within-trial cue combination has

occurred. We can, in particular, reject the cue-switching

hypothesis (that the observer is carrying out the task by

using one cue on each trial but changing cues from trial

to trial). However, the observer�s performance is still
sub-optimal compared to the prediction of the weighted

linear combination rule for uncorrelated cues. It is

possible that the cues are uncorrelated but that the ob-

server has simply picked weights that are sub-optimal.

Even though the weights are sub-optimal, we note that

the observer is still benefiting from combining cues. But

a second possibility is that the observer is behaving

optimally but that the cues are correlated. Finally, the
cues could be correlated and the observer could also

choose sub-optimal weights, in which case rc could be

either in Region B or C.

The design of the experiment we have described

(measure the reliability of two cues in isolation and in

combination) does not allow us to distinguish the pres-

ence of correlation between the cues from a sub-optimal

choice of weights in a linear combination rule. To do
that, we need a more complex experimental design

where we use two levels of reliability for each cue and

measure performance in the four possible single-cue

conditions and the four possible combined-cue condi-

tions. We describe how we do this as part of the methods

section that follows.
4. Experiment

4.1. Introduction

We next describe an experiment in cue combination
designed to detect correlation between the cues. In

previous work, cue independence has generally been

assumed, and results have by and large been consistent

with cue independence either because the cues were

logically independent as they came from different mo-

dalities (Ernst & Banks, 2002; Gepshtein & Banks,

2003), or two relatively independent visual cues were

used such as texture, motion and/or stereo disparity
(Hillis et al., 2002; Johnston et al., 1994; Knill &

Saunders, 2002; Landy et al., 1995; Young et al., 1993).

When the cues were less clearly ‘‘separable’’, such as the

orientation and spatial frequency cues to a texture

border used by Landy and Kojima (2001), there were

indications of cue correlation (although not pointed out

by the authors). In that paper, the reliability of the

combined cues was not always better than that of the
individual cues. In the experiment we describe now, we

intentionally have chosen two pictorial cues to depth

(texture and linear perspective) that arguably are not



Fig. 4. An example of a stimulus. This is a demonstration of a stimulus

for a combined-cue condition. Both of the cues (line grid and random

diamond texture) are present. In the actual stimuli, the lines and tex-

ture elements were white on a gray background.
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truly separate cues and thus might be expected to show

evidence of cue correlation.

In this experiment, the observer was trained to set an

inclined plane to a criterion slant (75�). The slant of the
plane was signaled by either a texture gradient, a linear

perspective grid, or both cues superimposed. Fig. 1 is an

example of an everyday scene containing both cues. The

design of the experiment allowed us to test the hypoth-
eses that the rule of combination is a weighted linear

combination with non-negative weights, the choice of

weights is optimal, and the internal cue estimates are

uncorrelated. In cases where the choice of weights is sub-

optimal we will test whether the combination was ben-

eficial.

4.2. Methods

4.2.1. Apparatus

The stimuli were displayed on a SONY Trinitron 21

in. monitor (Model GDM-G500) using a computer

equipped with a VSG 2/3 frame buffer from Cambridge

Research Systems. The screen of the monitor is close to

physically flat (less than 1 mm of deviation along any
horizontal line). It was covered with a black cardboard

mask with a rectangular aperture revealing only the

center region of the screen where stimuli were presented.

The observers viewed the stimuli in an otherwise dark

room. To further minimize distractions and extraneous

visual cues, the observers viewed the stimulus region

through a hood made out of black cardboard. The ob-

servers were seated 109 cm away from the screen, resting
their heads on a chin rest positioned so that viewing was

monocular (using the right eye), from a specified viewing

point. At the given viewing distance, the aperture sub-

tended approximately 19.9�
 14.4�.

4.2.2. Stimuli

The stimuli were virtual rectangular planes that, from

the observer�s viewpoint, appeared to be behind the

plane of the monitor surface. The virtual plane could be

set to any specified slant between 70� and 80�. The vir-

tual plane could contain either or both of the two fol-

lowing kinds of patterns: (1) a grid of horizontal and

vertical lines (the linear perspective cue) and (2) a ran-

domly distributed collection of diamonds (the texture

gradient cue). It might be possible for observers to

memorize the shape of a specific texture element, or

certain location on the grid and use it as an artifactual

cue to slant. To avoid this, for each trial we randomized

the position of all the texture elements, and the phase of

the grid with respect to the plane. The locations of the

diamonds were computed as follows: the number of

diamonds on any given trial was randomly chosen from
a Poisson distribution with one of two possible density

values (one for the ‘‘high variance’’ and one for the ‘‘low

variance’’ condition). The location of each diamond was
then chosen from a uniform distribution over the plane�s
surface subject to the constraint that no two diamonds

overlap. The contents of the plane at any slant were

mapped onto the display region via perspective projec-
tion appropriate to the observer�s viewpoint. An exam-

ple of a projected stimulus is shown in Fig. 4.

The bounding contour of a rectangular plane is po-

tentially a perspective cue to slant. The rectangular

plane was chosen to be so large that its interior filled the

viewing aperture and its edges were never visible.

The choice of these two cues, texture and linear per-

spective, was intended to provide stimuli for which the
independence assumption was likely to fail. The rect-

angular cells formed by the grid can be considered to be

‘‘texture elements’’ and the foreshortening of the dia-

mond shaped texture elements is, in effect, a linear per-

spective cue. One might expect the computation of slant

estimates from the grid and the texture to share common

mechanisms within the visual system that would incor-

porate common sources of noise. This would, in turn,
reveal itself as correlation between the estimates of the

two cues.
4.2.3. Cue conditions

If we only consider one texture cue, one linear per-

spective cue and their combination, we cannot discrim-
inate between the possibility that the cues are correlated

and the possibility that observers pick weights that are

sub-optimal. Accordingly, we consider stimuli formed

by two density levels of each of two depth cues (Fig. 5).

For the texture gradient cue, these are denoted T1 and

T2, differing in density of the texture gradient of ran-

domly placed diamonds. The average number of dia-

monds visible to the observer at 75� slant was 40 and 110
for the two levels of density, T1 and T2. For the linear

perspective cue, the levels are denoted L1 and L2, dif-

fering in the density of lines in a linear perspective



Fig. 5. The experimental conditions. There were four single-cue con-

ditions consisting of two density levels of each cue type. These are

shown on the left and top margins of the array of stimuli. The com-

bined-cue conditions are also shown. Each combined-cue condition is

made up of the single cues on the margin at the left end of its row and

at the top of its column.
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pattern. On average four horizontal and four vertical

lines were visible at 75� slant for density level L1. And

for L2, 30 horizontal and 28 vertical lines were visible.

We will estimate the observer�s reliability in each of the

four possible single-cue conditions (T1, T2, L1, L2) and

in each of the four possible combined-cue conditions
(T1+L1, T1+L2, T2+L1, T2+L2).

In pilot testing we verified that the observers� setting
reliabilities were substantially different for the different

levels of each cue type. However, there was no consis-

tency across observers as to which level of each cue

(higher or lower) resulted in higher reliability. Across the

range of texture and line densities used here, an ideal

observer�s performance improves with the additional
information provided by more texture elements or lines.

However, individual differences abound in depth per-

ception studies (such as the widely ranging cue reliabili-

ties across subjects found by Hillis et al., 2002, or the

large variation in abathic distance found by Kontsevich,

1998). Thus, we never report averaged data for this sort

of study, and have studied a relatively large number of

subjects expecting to find a wide range of cue reliabilities.
In fitting the data, we will assume that any correlation

between cues is the same in all combined-cue conditions.

With this assumption and this experimental design, we

will be able to estimate the correlation between cues

separately from the weights chosen by observers, as

described below. We can then test whether this corre-

lation is non-zero.

4.2.4. Observers

Eight observers participated in the experiment. Four

were experienced and three were inexperienced psycho-
physical observers all of whom were unaware of the

purpose of the experiment and were paid for their par-

ticipation. The last observer (IO) was one of the authors.

4.2.5. Task

The observer viewed the stimulus and adjusted its

apparent slant by pressing a key. Each key press chan-
ged the slant by 0.5�. S/he adjusted the plane until its

slant matched that of a remembered criterion (75�). The
observer received auditory feedback on his or her setting

on every trial. There were five levels of possible feed-

back. A correct answer (i.e. choosing the setting for 75�)
was rewarded with a short melody. For settings within

three steps of 75� (±1.5�), the feedback was half the

melody, played in the lower octave if the setting was less
then 75�, and in the higher octave if the setting was

greater than 75�. If the observer�s setting was further

from 75�, the feedback was a pure tone, with very low

pitch for lower, and with very high pitch for higher

settings.

4.2.6. Procedure

Faced with the very first trial, the observer does not

know what the criterion slant is. Therefore, his or her

setting at the first trial is necessarily a guess. The crite-

rion slant is learned over many trials through the feed-

back provided after each setting. The observers are

provided with training trials to facilitate learning. A

training trial is similar to an experimental trial, except
that the observer gets three chances to make a setting,

instead of one. In other words, after the observer makes

a setting and hears the feedback, s/he can adjust their

setting further, two more times, according to the feed-

back provided each time.

In each session, the observer completed both training

and experimental blocks. Each block consisted of eight

trials, one from each of the eight conditions (four single-
cue, four combined-cue), in random order. The number

of training blocks was relatively high in the first couple

of sessions, and was decreased towards the end as the

observer improved at the task. Again, the observer re-

ceived feedback on all trials; on training trials, there

were two additional chances to set slant correctly. A

typical session consisted of 54 blocks where the observer

would complete both experimental and training blocks.
The training block data were excluded from the

analysis. For the experimental trials, we computed the

setting error in each block as the squared difference be-

tween the observer�s setting and 75�, summed over eight

conditions in the block. We use the setting error as a

measure of how well the observer performed the task,

and plot it against the block number. An example of

such a learning curve, for one observer, is shown in Fig.
6. We required the observer to perform the task until

the setting error stabilized. Stabilization was assessed

by visual inspection of the learning curves. Observers
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typically took up to 120 blocks before setting error

stabilized. After the observer was judged to have stabi-
lized, s/he ran 60 experimental blocks, along with ad-

ditional training blocks interspersed among the training

blocks. For the observer in Fig. 6, the first 84 blocks

were discarded.

Due to the extensive training, we did not expect set-

ting biases. Indeed, the absolute value of deviation from

75� averaged over all observers was only 0.32�. Con-
sidering that the adjustable slants in the experiment were
a discrete set of angles regularly spaced at 0.5� intervals,
we can safely say that the observers� settings were un-

biased.
4.2.7. Results and discussion

Let S1; S2; . . . ; S60 denote the observer�s settings in one

condition. Typically in a small percentage of trials ob-

servers are expected to make mistakes due to failures of

attention and so on. Estimates of variance (and reli-

ability) are very sensitive to such outliers. To avoid such

inflation, we first converted the data for each condition

into z-scores and removed the trials whose z-scores fell

outside the interval ()2, 2). Typically, two trials were
discarded from each set of 60. We computed the sample

variance of the remaining (‘‘trimmed’’) data.

If S1; S2; . . . ; S60 are independent, identically distrib-

uted Gaussian random variables with variance r2, then

the expected value of the trimmed sample variance is

about 0:77r2. We corrected our estimates of variance

(and reliability) by dividing by 0.77. All the following

analysis is based on this corrected trimmed variance

measure, an example of a robust statistical estimator

(Hampel, Ronchetti, Rousseeuw, & Stahel, 1986). We

take as our estimate of reliability
r̂r ¼ TVarðS1; . . . ; S60Þ�1
; ð8Þ

where TVarðS1; . . . ; S60Þ is the corrected trimmed vari-
ance measure just described. We estimated reliabilities

for each of the eight conditions separately for each ob-

server.

Fig. 7 shows the estimated reliabilities for one ob-

server (IO) tabulated in the same format as the stimuli

in Fig. 5. In the marginal cells we see the reliabilities

measured for the four single-cue conditions. We know

that in a combined-cue condition the optimum combi-
nation rule yields a reliability equal to the sum of the

two single-cue reliabilities. These predicted optimal

values are marked with a rectangle around them. The

other values in these cells are the measured reliabilities

for the combined-cue conditions. A quick visual com-

parison shows that the measured reliabilities are slightly

lower than expected from an optimal combination rule,

but consistently better than the reliability of the better of
the two cues in isolation. We will turn to formal statis-

tical tests in a moment but, for now, we note that IO is

an observer whose performance is consistent with a

weighted linear cue combination with non-negative

weights and who has chosen weights that result in a

higher reliability in combined-cue conditions than could

be achieved with either cue alone. This observer is not

simply ‘‘cue switching’’.
In Fig. 8, we plot the results for IO and the other

seven observers in the format of Fig. 3. In discussing

Fig. 3, we assumed we had perfect knowledge of single-

cue reliabilities and combined-cue reliabilities and now

we have only estimates of these values. Each of the es-

timates is shown with its 95% bootstrap confidence in-

terval (Efron & Tibshirani, 1993). Fig. 8A shows the

data for observer IO, already seen in Fig. 7, plotted in
this format. There are four sub-plots, one for each of the

four combined-cue conditions. In each sub-plot, filled

circles indicate the reliabilities for the combined-cue



Fig. 8. Reliability plots for all observers. The four combined-cue conditions for each observer are plotted in the format of Fig. 3 with 95% bootstrap

confidence intervals added (Efron & Tibshirani, 1993). In each sub-plot the dotted horizontal line represents the reliability level of the texture cue, the

solid horizontal line marks the reliability level of the linear perspective cue, and the dashed horizontal line marks the optimal combined reliability for

uncorrelated cues. The cue levels for the two cues are noted below each sub-plot. The y-axis indicates reliability. Each observer�s data (a group of four

sub-plots) are plotted using the same y-axis scale factor; the scale factors differ between observers.
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condition, and the reliabilities of the single cues are

marked with horizontal lines, dotted for the texture cue,

and solid for the linear perspective cue. The sum of the

single-cue reliabilities is also marked as a dashed hori-

zontal line.
We would like to determine whether human reliabil-

ity in the combined-cue case is consistent with the pre-

dictions for optimal cue combination of uncorrelated

cues, that is, in each sub-plot for each observer, is

the reliability in the combined-cue condition (the filled
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circle) equal to the sum of the reliabilities in the single-

cue conditions (the dashed line)? A visual inspection of
the plots seems to suggest that cue combination strate-

gies of observers IO, JK and ELA are approximately

optimal, whereas observers TB, FSC, AD, and ML seem

to have employed less than optimal combination rules.

Results for observer RL, on the other hand, are more

complicated. There is a marked discrepancy between the

four cases in Fig. 8H. Two of the four sub-plots suggest

optimal combination, and the other two seem sub-
optimal.

To quantify how sub-optimal an observer is, we de-

fine a measure of efficiency, X. For each observer, we

have four combined-cue conditions that we will number

from 1 to 4. For condition k we have the observer�s
measured reliability with both cues, r12;k, and the sum of

the observer�s measured reliabilities for the two single-

cue conditions, r1;k þ r2;k. We form the efficiency index

X ¼ 100

Y4
k¼1

r12;k
r1;k þ r2;k

 !1=4

ð9Þ

for each observer. 2 Fig. 9 shows the efficiency of each of

the eight observers. Note that we are holding the ob-

servers to a very high criterion. If there is correlation

between the cues, then even an optimal observer can

appear sub-optimal by this index.
2 The index is the geometric mean of the ratios of the reliability of

the human observer in each combined-cue condition to the maximum

possible reliability predicted from the corresponding single-cue condi-

tions. If we translate reliabilities to variances, the resulting ratios of

variances are the standard definition of the relative reliability of

estimators employed in mathematical statistics (Freund, 1992, p. 361).
Observers IO, JK and ELA evidently have high effi-

ciencies, above 85%, and observers TB, FSC, AD, ML,

and RL all have markedly lower efficiencies, ranging

between 32% and 66%. To determine whether these

values are consistent with optimal behavior, we per-

formed a bootstrap simulation. For each human ob-

server we simulated an ideal observer with the same

single-cue reliabilities as the human, but that combines
cues optimally, and computed 1000 samples of X for this

ideal observer. The rejection region 3 is the upper and

lower 2.5 percentiles of the histogram formed by the

1000 samples of X. If the efficiency of the observer is too

low compared to that of the ideal, then s/he is judged to

be sub-optimal. On the other hand, if X is too high, then

this observer is judged to be super-optimal, still incon-

sistent with the model. Remember that the optimal
combined reliability is by definition the maximum value

achievable by a linear combination rule. A higher

combined reliability would suggest that the observer is

not consistent with the linear model upon which we base

our analysis. According to the test based on the boot-

strap simulation we reject optimality for observers TB,

FSC, AD, ML, and RL. For observers IO, JK, and

ELA, we fail to reject optimality.
In Fig. 2, we illustrated how correlation between cues

can reduce the optimal achievable reliability of an ob-

server who combines cues by a weighted linear rule.

When we find that combined-cue reliability is lower than

the predicted optimal value for an observer, it might be

because the observer�s choice of combination rule was

sub-optimal, but it could also be because the cues are

correlated. We consider the possibility that some of the
observers are combining cues optimally but that the cues

are correlated.

When the weights applied to cues are constrained to

be non-negative, the optimal reliability that can be

achieved by a weighted linear combination of two cor-

related cues is always less than the optimal reliability

that can be achieved in combining two uncorrelated cues

with reliabilities identical to those of the first pair. As we
show in Appendix A, this need not be the case if we

allow some weights to be negative (as the weights are

constrained to sum to 1, not all can be negative). In the

remainder of this section, we constrain weights to be

non-negative, postponing discussion of the conse-

quences of allowing negative weights to the conclusion.

To anticipate the outcome, we find no evidence either in

the literature or in our experimental results that sup-
ports the claim that observers use negative weights in

combining cues.
3 For this and all subsequent tests, the null hypothesis is rejected if

p < 0:05. The results of all the tests we performed (along with their null

hypotheses, acceptance regions, test statistics and results) are given in

Table 1.
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Fig. 10. Efficiency indices: correlated and uncorrelated cases. The effi-

ciency indices for each of the eight observers are plotted. For each

observer, the bar on the left is the efficiency index X with the cues

assumed to be uncorrelated. The bar on the right is the revised opti-

mality index allowing for a possible non-zero cue correlation. The

estimate of cue correlation is shown and, if marked with an asterisk,

it is significantly different from 0.
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We fit the observers� data allowing for the possibility

that there may be a non-zero correlation between cues.

We assumed that this correlation was the same in all
experimental conditions for a given observer, but that

different observers might have different correlations. In

Fig. 10, we plot each observer�s measure of efficiency

with correlation considered next to the corresponding

measure of efficiency in the uncorrelated case (from Fig.

9). The corresponding maximum likelihood estimates of

the correlation values are given above each bar.

We performed a bootstrap simulation to determine
the significance of the increase in efficiency due to al-

lowing for a non-zero correlation. For each human

observer we simulated an ideal observer with zero cor-

relation and the same single-cue reliabilities as the

human, and computed 1000 samples of X for this ideal

observer. Also, for each simulated data set, we allowed

for non-zero correlation, and computed its maximum

likelihood estimate. Then, we computed the efficiency
again, this time taking into account our estimate of

correlation. The difference between the two efficiencies is

the ‘‘spurious’’ increase in efficiency of allowing non-

zero correlation (it is a ‘‘spurious’’ increase because we

already know that this ideal observer has zero correla-

tion). Thus, we formed a histogram of increase in effi-

ciency for an ideal zero correlation observer. If the

human observer�s increase in efficiency is above the 95th
percentile of this histogram, then it is judged to be a

significant increase, as marked with an asterisk in Fig.

10. We see that the optimal observers IO, JK and ELA

did not show a significant increase in efficiency from

allowing a non-zero correlation between the two cues.
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Efficiencies for the rest of the observers were signifi-

cantly increased, indicating that their data were consis-

tent with combining correlated cues. Indeed, a test based

on bootstrap as before shows that for observers FSC,

AD and RL we cannot reject optimality. Still, for ob-

servers TB and ML, allowing for correlated cues does

not completely account for the sub-optimality observed

in their results, as the test rejects optimality for these
observers.

Even if some observers are not combining cues opti-

mally, we are still interested in whether they benefit from

having two cues. By benefit we mean that they achieve a

combined reliability higher than both single-cue reli-

abilities. This would rule out the possibility of a ‘‘cue-

switching’’ strategy in which the observers use only one

of the two cues available at each combined-cue trial, and
switch from one cue to the other on different trials. We

would be able to say that the observers are actually

combining cues, if we can show they are benefiting from

having two cues. We need to check whether the com-

bined reliability is higher than that of the more reliable

single cue or, in other words, if the combined reliability

(solid circle) is in region C of Fig. 3.

To quantify how much an observer benefits from
combining cues we define a statistic

S1 ¼ 100

Y4
k¼1

r12;k
maxfr1;k; r2;kg

 !1=4

: ð10Þ

To test whether the S1 values for observers TB and ML

are consistent with a benefit from combining cues, we
performed a bootstrap simulation of a worst-case ob-

server that cannot combine cues, but uses the more re-

liable cue on combined-cue trials. We computed 1000

samples of S1 for this worst-case observer. The rejection
region is the region above the 95th percentile of the

histogram formed by the 1000 samples of S1. With this

test, neither observer TB nor ML is significantly more

reliable than this worst-case observer. The evidence is
insufficient to prove that they benefit from cue combi-

nation.

We have established that observers TB and ML do

not combine cues optimally. Furthermore, they do not

benefit from having two cues. Last, we would like to

test, for these observers, whether the combined reli-

abilities are consistent with a linear combination rule.

For this, we need to check whether the combined reli-
abilities are within the range achievable by a weighted

average (regions B and C in Fig. 3). We define a statistic

S2 ¼ 100

Y4
k¼1

r12;k
minfr1;k; r2;kg

 !1=4

: ð11Þ

To test whether the S2 values for observers TB and ML

are consistent with a linear combination rule, we per-

formed a bootstrap simulation of another worst-case
observer that uses the less reliable cue on combined-cue

trials. Note that at this point we have already ruled out

the possibility of super-optimality for these two ob-

servers. We only need to check whether the combined

reliabilities are lower than that possible with a weighted

average. The lowest combined reliability achievable by a

weighted average is the reliability of the less reliable cue

(i.e., the observer ignores the better cue). Any lower than
that would suggest that adding a better cue in the scene

is hurting combined reliability. Again, we computed

1000 samples of S2 for this worst-case observer. The

rejection region is the region below the 5th percentile of

the histogram formed by the 1000 samples of S2. With

this test, we cannot reject the hypothesis that observers

TB and ML are consistent with a linear combination

rule.
5. Conclusion

The performance of all eight observers is consistent
with a linear cue combination model. We remind the

reader that the minimum-variance rule of combination

need not be the linear rule of combination when the

distributions of cues are not Gaussian (Appendix B).

The observers� performance in the combined-cue con-

ditions is neither better nor worse than predicted by a

linear combination rule.

The performance of six of the eight observers could
not be discriminated from optimal. For three of these

optimal observers (IO, JK, ELA), we did not have to

assume any degree of correlation between internal cue

estimates. For the other optimal observers (FSC, AD,

RL), we rejected the hypothesis that correlation was

zero. Observer RL�s data were peculiar, however, as the

degree of optimality varied greatly between conditions.

The remaining sub-optimal observers (TB, ML) passed
only the test for linearity. These are substantial indi-

vidual differences although, as discussed earlier, large

individual differences are the rule in depth perception

studies such as this.

In the analysis and discussion above, we assumed that

observers would assign only non-negative weights to

cues. When the cues are uncorrelated, or if correlation is

negative, the optimal weights are always non-negative
(Eq. (5)). For two positively correlated cues, how-

ever, the choice of weights that minimize variance is

(Appendix A), wi / ri � q12

ffiffiffiffiffiffiffiffi
r1r2

p
. The optimal choice of

weight w1 will be negative whenever q12 >
ffiffiffiffiffiffiffiffiffiffi
r1=r2

p
. The

optimal choice of weight w2 will be negative whenever,

q12 >
ffiffiffiffiffiffiffiffiffiffi
r2=r1

p
. At most one of the weights can be nega-

tive (they must sum to 1) and the negative weight must

correspond to the cue with the lower reliability. Intu-
itively, if the cues are highly correlated, the cue with

lower reliability can be used to cancel a portion of the

noise in the more reliable cue (by giving the less reliable
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cue a negative weight). We have established the fol-

lowing proposition: The optimal weights will both be

non-negative if and only if

q12 6 minf
ffiffiffiffiffiffiffiffiffiffi
r2=r1

p
;

ffiffiffiffiffiffiffiffiffiffi
r1=r2

p
g: ð12Þ

Even when there is a positive correlation between the
cues, the optimal choice of weights may be all non-

negative (see, e.g., Fig. 2). When r1 ¼ r2, for example,

the above condition is always satisfied (correlation

cannot exceed 1), and the weights will be non-negative.

Moreover, the reliability of the optimal weighted

linear combination (from Eq. (7)) with two correlated

cues can exceed the reliability of the optimal combina-

tion of two uncorrelated cues with the same reliabilities.
It is easy to show that when the correlation q is positive,

r1 þ r2 <
r1 þ r2 � 2q

ffiffiffiffiffiffiffiffi
r1r2

p

1� q2
if and only if

q > 2
ffiffiffiffiffiffiffiffi
r1r2

p
=ðr1 þ r2Þ: ð13Þ

The left-hand side of the first inequality is the maximum

possible reliability of a weighted linear combination of

two uncorrelated cues with reliabilities r1 and r2, while
the right-hand side is the maximum possible reliability if

the same cues are correlated with correlation q. To il-

lustrate, we have plotted the reliability (Fig. 11) of a

weighted linear combination of two cues versus the
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Fig. 11. High correlations and negative weights. For large positive

correlations, the weights that maximize the reliability of the weighted

linear may not fall between 0 and 1. The weights still sum to 1 but one

is negative, the other greater than 1. This figure is a plot of reliability

versus the weight of the weaker cue when the cue reliabilities are

r1 ¼ 0:5 and r2 ¼ 2. Two curves are plotted, one for the uncorrelated

case ðq ¼ 0Þ and one for the case where q ¼ 0:9. In the uncorrelated

case, maximum reliability occurs when w ¼ 0:2 and the maximum

achieved is the sum of the reliabilities of the two individual cues (i.e.,

2.5). In the correlated case, the maximum occurs at w1 ¼ �0:57. Note

that the maximum achieved rc ¼ 3:68 is greater than the sum of the

reliabilities of the two cues (2.5).
weight of the less reliable cue with r1 ¼ 0:5 and r1 ¼ 2

for the case where q ¼ 0 and the case where q ¼ 0:9.
Note that q >

ffiffiffiffiffiffiffiffiffiffi
r1=r2

p
, so we expect that the optimal

weight for the less reliable cue to be negative. Further,

q > 2
ffiffiffiffiffiffiffiffi
r1r2

p
=ðr1 þ r2Þ, so we expected that the maximum

reliability with the correlated cues will exceed the reli-

ability with the uncorrelated cues. The plots in Fig. 11

bear out both predictions.
The implication is that we may encounter negative

weights in cue combination studies when correlated cues

are combined optimally, at least when correlations are

large and the single-cue reliabilities differ considerably.

In effect, the observer uses a less reliable cue to cancel

‘‘noise’’ from a more reliable cue when the cues are

correlated. We know of no evidence for negative weights

in studies that explicitly measure the weights assigned to
individual cues. We have based our analysis on the as-

sumption that observers are not able to use negative

weights and it is of interest to inquire whether allowing

for the possibility of negative weights would alter our

conclusions in any respect.

For the data collected in this experiment, relaxing the

constraint that weights be non-negative has very little

effect on results of our analysis. Here is why: the optimal
weights for combining uncorrelated cues are always

non-negative (Eq. (2)). Therefore, our optimality tests

for uncorrelated cues are not affected. An optimal un-

correlated observer has to use non-negative weights.

Only three observers failed the condition in Eq. (12)

for at least one of the combined-cue conditions: RL,

AD, and ML. For the remainder, the optimal choices of

weights are still non-negative even when the possibility
of correlation is taken into account. Of these three ob-

servers, observer RL�s data already exhibited internal

inconsistency. Observer ML did not pass the test for

correlated optimality: his reliability in the combined-cue

conditions is simply too low to count as optimal. Al-

lowing for negative weights can only increase the crite-

rion value (optimal reliability), making the test harder to

pass, and therefore the outcome would be the same.
Similarly, for observer AD, allowing for negative

weights will make the test harder to pass; but since this

observer has passed this test we performed the bootstrap

simulation again, to check. When we allow for negative

weights, the acceptance region for X for correlated op-

timal combination is [112.30, 194.53]. Remember that X
for AD is 62.89. Thus if we were to assume that ob-

servers are able to use negative weights we reject opti-
mality for observer AD. This is the only change that

would be caused by allowing for negative weights: AD

would no longer be judged to be optimal.

The benefits test simply checks whether the reliabili-

ties in the combined-cue conditions are larger than that

of the more reliable single-cue conditions. Thus, this

test�s outcome has no relation to the particular weights

that were used.
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The linearity test was performed for two observers,

ML and TB, and only for the lower bound. Allowing for

negative weights will only relax the lower bound for this

test. Since both observers passed this test, the results

would be unchanged.

In summary, we raise the intriguing possibility that

human observers may employ negative weights in some

cue combination tasks, using a less reliable cue to cancel
‘‘noise’’ from a more reliable cue when the cues are

highly correlated. However, in our particular case, al-

lowing for this possibility has very little effect on our

results and conclusions and we find no evidence that

weights are ever negative.

In this study we have found evidence confirming that

depth cue combination is linear. We have introduced the

concept of correlated cues. We established that under
certain conditions, apparently sub-optimal cue combi-

nation performance might, in fact, be explained by the

cues being non-independent. We found that the degree

of cue correlation as well as the optimality of cue

combination varied from subject to subject. It remains

to be seen whether such cue correlations or sub-optimal

behavior might be eliminated with practice.
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Appendix A. Minimum variance unbiased linear estima-

tion

In this and the following appendices, we have gath-

ered results from the mathematical statistics literature

relevant to cue combination that are usually stated

without proof, the proof being left to the reader. The

results concerning correlated cues in this appendix are

based on Keller and Olkin (2002, p. 5). We make no
assumptions 4 about the distributions of the random

variables that represent estimates from different cues. In

particular, we do not assume that the variables are

Gaussian.

Notation. The identity matrix will be denoted I and

the transpose of any vector or matrix is V is denoted V 0.

Let S ¼ ½S1; . . . ; Sn�0 be a column vector of random

variables, S1; . . . ; Sn. These random variables are as-
sumed to share a common expected value, EðSiÞ ¼ s, but
can have distinct variances, VarðSiÞ ¼ r2

i > 0. The cor-

relation between Si and Sj is denoted qij and the corre-
4 Other than that they have finite means and variances.
lation matrix is the matrix R whose ijth entry is qij. The

covariance of Si and Sj is qijrirj and the covariance

matrix of S1; . . . ; Sn is

R ¼

r2
1 q12r1r2 � � � q1nr1rn

q12r1r2 r2
2 q2nr2rn

..

. . .
. ..

.

q1nr1rn � � � r2
n

2
6664

3
7775: ðA:1Þ

Both the correlation matrix R and the covariance matrix

R are symmetric (as qij ¼ qji). We assume throughout

that R is invertible, i.e. that there really are n uncorre-

lated cues.

When the random variables S ¼ ½S1; . . . ; Sn�0 are un-

correlated (qij ¼ 0 whenever i 6¼ j), the correlation ma-
trix is the identity matrix, and the covariance matrix is

the diagonal matrix Diagðr2
1; . . . ; r

2
nÞ.

We wish to estimate s given S1; . . . ; Sn using a

weighted linear combination rule. Given a vector of

non-negative weights w ¼ ½w1; . . . ;wn�0 with
Pn

i¼1 wi ¼ 1,

the weighted linear combination,

FwðSÞ ¼ w0S ¼
Xn
i¼1

wiSi ðA:2Þ

is an unbiased estimate of s:

EðFwðSÞÞ ¼
Xn
i¼1

wiEðSiÞ ¼
Xn
i¼1

wis ¼ s: ðA:3Þ

The variance of the estimate is

VarðFwðSÞÞ ¼
Xn
i¼1

Xn
j¼1

wiwjqijrirj; ðA:4Þ

or, in matrix notation,

VarðFwðSÞÞ ¼ w0Rw: ðA:5Þ
We wish to determine the choice of weights w ¼
½w1; . . . ;wn�0 that minimizes the variance above. We will

first consider the uncorrelated case.

Proposition A.1. When the random variables are uncor-
related, then the variance of the weighted linear combi-
nation is

VarðFwðSÞÞ ¼ w0Diagðr2
1; . . . ; r

2
nÞw ¼

Xn
i¼1

w2
i r

2
i : ðA:6Þ

The variance is minimized when the weights are wi ¼
r�2
i =
Pn

j¼1 r�2
j ¼ ri=

Pn
j¼1 rj (using the alternative para-

meterization, ri ¼ r�2
i described in the main text).

Proof. The earliest reference for this result that we have

found is Cochran (1937) who proved it for the case

where the random variables S ¼ ½S1; . . . ; Sn�0 are Gauss-
ian. The Cauchy–Schwarz inequality (Hardy, Little-

wood, & P�oolya, 1952 , p. 16) states that, for any real

numbers a1; . . . ; an and b1; . . . ; bn,
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Xn
i¼1

a2i
Xn
i¼1

b2i P
Xn
i¼1

aibi

 !2

: ðA:7Þ

Further, the inequality is an equality if and only if the

a1; . . . ; an and the b1; . . . ; bn are proportional. More

precisely, equality holds only if the b1; . . . ; bn are all zero
or there is a constant c with ai ¼ cbi for i ¼ 1; 2; . . . ; n.

Letting ai ¼ wiri and bi ¼ r�1
i in the Cauchy–Sch-

warz inequality, we have

Xn
i¼1

w2
i r

2
i

Xn
i¼1

r�2
i P

Xn
i¼1

wi

 !2

¼ 1: ðA:8Þ

The first term on the left-hand side is the variance we

wish to minimize and the other terms do not depend on

the choice of weights. The variance is evidently mini-

mized when the inequality is an equality, which (as the

bi ¼ r�1
i cannot be 0) occurs precisely when the ai ¼ wiri

are equal to a constant times the bi ¼ r�1
i . This occurs

when wi / r�2
i . The constant of proportionality is de-

termined by the constraint
Pn

i¼1 wi ¼ 1, giving

wi ¼ r�2
i

Xn
j¼1

r�2
j

,
¼ ri

Xn
j¼1

rj

,
; ðA:9Þ

which is what we set out to prove. h

We next wish to determine the variance-minimizing

weights when the random variables S ¼ ½S1; . . . ; Sn�0 may

be correlated. The variance we wish to minimize is still

w0Rw. We will first determine the solution in the fol-

lowing proposition and then show how it can be sim-

plified.

Proposition A.2. Consider the case where the correlations
between the random variables S ¼ ½S1; . . . ; Sn�0 may be
non-zero. Then the variance-minimizing weights are pro-
portional to the sums of the elements in the corresponding
rows of the inverse of the covariance matrix R�1:

w / R�1e; ðA:10Þ
where e ¼ ½1; 1; . . . ; 1�0.

Example. Before proving the proposition, we illustrate it

for the case n ¼ 2, the case considered in the main text.
We can readily calculate the inverse of the covariance

matrix by cofactors (described below) or Cramer�s rule

(Strang, 1988, p. 231ff); it is

R�1 ¼ 1

1� q2
12

r�2
1 �q12r

�1
1 r�1

2

�q12r
�1
1 r�1

2 r�2
2

� �
: ðA:11Þ

If we change parameterization to reliabilities and sum

the rows (ignoring the constant in front of the matrix),

we have

wi / ri � q12

ffiffiffiffiffiffiffiffi
r1r2

p ðA:12Þ
as in the main text (where q12 is denoted q). We now

prove this result for all n. As discussed in the main text,

we can think of the weights in the correlated case as

proportional to corrected reliabilities, r0i ¼ ri � q12

ffiffiffiffiffiffiffiffi
r1r2

p
,

corrected for the correlational structure in the random

variables S ¼ ½S1; . . . ; Sn�0. In Proposition A.3 we will

show that we can extend this way of thinking to the

general case. But first, the proof of Proposition A.2.

Proof. The covariance matrix R is symmetric and posi-

tive definite (Strang, 1988, Chap. 6). By the spectral

decomposition theorem, it can be factored into the form

V 0DV where D ¼ Diagðs21; . . . ; s2nÞ and V is an orthogo-

nal matrix satisfying V 0V ¼ I (Mardia, Kent, & Bibby,

1979, p. 469).

The inverse of the covariance matrix is V 0D�1V where
D�1 ¼ Diagðs�2

1 ; . . . ; s�2
n Þ is the inverse of the diagonal

matrix D. If we let v ¼ Vw, then we can write the vari-

ance of the weighted linear combination in terms of v,

w0Rw ¼ w0V 0DVw ¼ v0Dv ðA:13Þ
and we seek to minimize v0Dv ¼

Pn
i¼1 v

2
i s

2
i subject to the

constraint
Pn

i¼1 wi ¼ 1. Define z ¼ Ve. As in the uncor-

related case, we let ai ¼ sivi and bi ¼ s�1
i zi and write out

the Cauchy–Schwarz inequality,

Xn
i¼1

v2i s
2
i

Xn
i¼1

z2i s
�2
i P

Xn
i¼1

visizis�1
i

 !2

¼ ðv0zÞ2

¼ ðw0V 0VeÞ2 ¼ ðw0eÞ2 ¼ 1; ðA:14Þ

where we use the fact that V 0V ¼ I . As in the uncorre-

lated case, the variance is minimized when visi / zis�1
i or

equivalently, vi / zis�2
i . In vector notation, the condition

for minimum variance is that v ¼ cD�1z for some con-

stant c. Substituting for v and z,

Vw ¼ cD�1Ve ðA:15Þ
and, multiplying both sides of the above by the non-

singular matrix V 0,

w ¼ cV 0D�1Ve ¼ cR�1e; ðA:16Þ
the result we wished to prove. The variance-minimizing

weights are proportional to the sums of the rows of the

inverse of the covariance matrix, R�1. h

We now wish to characterize the weights cR�1e and,

to do so, we factor the covariance matrix as

R ¼ Diagðr1; . . . ; rnÞRDiagðr1; . . . ;rnÞ; ðA:17Þ
where R ¼ ðqijÞ is the correlation matrix. The inverse

covariance matrix R�1 can be expressed as

R�1 ¼ Diagðr�1
1 ; . . . ; r�1

n ÞR�1Diagðr�1
1 ; . . . ; r�1

n Þ:
ðA:18Þ

Let the elements of R�1 be denoted dij. The first row of

R�1 can then be written as (switching to reliabilities ri)
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d11r1 d12

ffiffiffiffiffiffiffiffi
r1r2

p � � � d1n
ffiffiffiffiffiffiffiffi
r1rn

p� �
ðA:19Þ

and

w1 / d11r1 þ
Xn
i¼2

d1i
ffiffiffiffiffiffiffi
r1ri

p
: ðA:20Þ

The jth weight is

wj / djjrj þ
X
i6¼j

dij
ffiffiffiffiffiffiffi
rirj

p ðA:21Þ

and if we define the right-hand side of the above as the

reliability corrected for correlation, then we find that the

weights are proportional to the corrected reliability.

The dij are readily computed by cofactors (Strang,

1988, pp. 231ff ) as

dij ¼ ð�1ÞiþjjRði; jÞj=jRj; ðA:22Þ

where Rði; jÞ is the correlation matrix R with the ith row

and jth column removed and jj denotes the determinant.

For example, when

R ¼
1 q12 q13

q12 1 q23

q13 q23 1

2
4

3
5; ðA:23Þ

the inverse of the correlation matrix is

ðdijÞ ¼
1� q2

23 q13q23 � q12 q12q23 � q13

q13q23 � q12 1� q2
13 q12q13 � q23

q12q23 � q13 q12q13 � q23 1� q2
12

2
4

3
5
 1

jRj

ðA:24Þ
and

w1 / ð1� q2
23Þr1 þ ðq13q23 � q12Þ

ffiffiffiffiffiffiffiffi
r1r2

p

þ ðq12q23 � q13Þ
ffiffiffiffiffiffiffiffi
r1r3

p
; ðA:25Þ

where the reciprocal of the determinant jRj has been

absorbed into the constant of proportionality.

Substituting Eq. (A.22) into Eq. (A.21), we have

Proposition A.3. The variance-minimizing weights are,
with the notation above, defined by

wj / jRðj; jÞjrj þ
X
i6¼j

ð�1ÞiþjjRði; jÞj ffiffiffiffiffiffiffirirj
p

: ðA:26Þ

If we define the corrected reliability of the ith cue to be the
expression on the right-hand side, then the optimal
weights are proportional to reliability corrected for cor-
relational structure.

The minimum variance achieved by the optimal rule

can be computed by substituting the expression for the

weights, w / R�1e into the expression for the variance,

w0Rw. First, we need to determine the constant of pro-
portionality in the expression, w / R�1e. But this is just
the inverse of the sum of the sum of the rows: ðe0R�1eÞ�1

.

Thus,
VarðFwðSÞÞ ¼ e0R�1RR�1eðe0R�1eÞ�2

¼ ðe0R�1eÞ�1 ðA:27Þ

or, in terms of reliability,

r ¼ e0R�1e: ðA:28Þ

In the uncorrelated case, R�1 ¼ Diagðr1; . . . ; rnÞ, and we
can verify once again that r ¼ r1 þ r2 þ � � � þ rn.
Appendix B. Other approaches

B.1. Non-linear rules

As in the previous appendix, let S ¼ ½S1; . . . ; Sn�0 be a

column vector of random variables, S1; . . . ; Sn, with a

common expected value, EðSiÞ ¼ s, and variances,
VarðSiÞ ¼ r2

i > 0. The correlation between Si and Sj is
denoted qij and the correlation matrix is the matrix R
whose ijth entry is qij. The covariance matrix R is the

matrix whose ijth entry is qijrirj. In the previous ap-

pendix, we determined the minimum-variance weighted

linear combination rule of S ¼ ½S1; . . . ; Sn�0 subject to the

constraint that the weights be positive and sum to 1. The

constraint on the weights guarantees the expected value
of the weighted linear cue combination to be s, i.e. that
it is unbiased.

We might wonder, is there some non-linear combi-

nation rule that is unbiased and that has even lower

variance than the optimal linear rule? The answer, in

general, is that there can be. An example of a non-linear

cue combination rule that is unbiased and that has lower

variance than the optimal linear rule is given in Freund
(1992, p. 368, Problem 10.30). However, when the

S ¼ ½S1; . . . ; Sn�0 are Gaussian, the linear combination

rule derived in the previous appendix is the minimum

variance unbiased estimator of the common mean s
(Freund, 1992, pp. 360–361). There are other choices of

distributions for which a weighted linear rule has mini-

mum variance as well (Mood, Graybill, & Boes, 1974,

pp. 318–319).
B.2. Bayesian approaches

There has been a great deal of work recently applying

Bayesian decision-making models to perceptual behav-

ior (Mamassian & Landy, 1998, 2001; Mamassian,

Landy, & Maloney, 2002; Trommersh€aauser, Maloney, &

Landy, 2003a, 2003b; see Knill & Richards, 1996; Ma-

loney, 2002; Rao, Olshausen, & Lewicki, 2002). The

Bayesian approach begins with the assumption that the

true value of slant s is the realization of a random
variable that has a known prior distribution, P ðsÞ. The
Bayesian observer uses knowledge of that distribution to

improve the estimate of slant based on sensory data
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alone. Given two cues, S1 and S2, the Bayesian observer

chooses as the slant estimate S that value of slant that

maximizes the a posteriori (MAP) probability,

P ðsjS1; S2Þ / P ðS1; S2jsÞPðsÞ: ðB:1Þ

If the cues are conditionally independent, 5 this simpli-

fies to

P ðsjS1; S2Þ / P ðS1jsÞPðS2jsÞPðsÞ: ðB:2Þ

Eq. (B.2) is the Bayesian analogue of the uncorrelated

case treated in the previous appendix, with the difference
that we cannot reduce Eq. (B.2) to an estimate without

explicit knowledge of the distributional forms of the

likelihood functions P ðSijsÞ and the prior distribution
P ðsÞ. If all are Gaussian in form, the MAP estimate is

identical to the minimum variance estimate of Eqs. (1)

and (2) with the mean of the prior effectively treated as

an additional non-sensory cue weighted in proportion to

its own reliability. To prove this claim, we need the
following result:

Proposition B.1. The product of the n probability density
functions (pdf ) of n Gaussian variables with respective
means l1; . . . ; ln and reliabilities r1; . . . ; rn is proportional
to a Gaussian probability density function with mean
l ¼

Pn
i¼1 wili with wi ¼ ri=

Pn
j¼1 rj, and reliability r ¼Pn

i¼1 ri.

Proof. Written in terms of reliability, a Gaussian pdf

with mean li and reliability ri is of the form /ðs; li; riÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
ri=2p

p
expð�1

2
riðs� liÞ

2Þ. The product of n of them is

Yn
i¼1

pðs; li; riÞ ¼ C exp

�
� 1

2
rðs2 � 2lsÞ

�
; ðB:3Þ

where C does not depend on s. Completing the square in

the exponent,

Yn
i¼1

pðs; li; riÞ ¼ C exp

�
� 1

2
rðs2 � 2lsþ l2Þ

�
exp

1

2
rl2

� �

¼ C0 exp

�
� 1

2
rðs� lÞ2

�
ðB:4Þ

and, as the last term is proportional to a Gaussian pdf

with mean l and reliability r, we have proven the
proposition. h

When the likelihood functions in Eq. (B.2) are
Gaussian, we can write them in the form P ðSijsÞ ¼
/ðs; Si; riÞ for i ¼ 1; 2. When the prior is also Gaussian,

we can write it in the form P ðsÞ ¼ /ðs; S0; r0Þ. Then, the
5 Yuille and B€uulthoff (1996) consider the case where the posterior

distribution for two cues can be expressed as the product of the

posterior distributions for the individual cues: P ðsjS1; S2Þ /
P ðsjS1ÞP ðsjS2Þ and state that, in the Gaussian case, the MAP is a

weighted linear combination.
posterior distribution in Eq. (B.2) is the product of three

Gaussian pdfs and, applying the proposition above, the

MAP is,

S ¼ w0S0 þ w1S1 þ w2S2; ðB:5Þ
where the weights sum to 1 and wi / ri. The prior is, in

effect, a cue with a fixed value S0 and reliability r0. While

S1 and S2 are random variables that, by assumption,

have expected values s (the true slant), S0 is not a ran-

dom variable and its expected value is not, in general, s.
The expected value of the MAP estimator in Eq. (B.5) is

E
X2
i¼0

wiSi

" #
¼ sþ w0ðS0 � sÞ; ðB:6Þ

and the estimator is biased toward S0 in any particular

scene unless the prior mean is exactly the true value s in
that scene. This bias represents an intentional trade-off

between the non-sensory information in the prior and
the unbiased sensory information available from the

cues (Maloney, 2002) and the magnitude of the bias is

proportional to w0 ¼ r0=ðr0 þ r1 þ r2Þ, the relative

magnitude of the prior reliability r0 and the reliability

r1 þ r2 of the sensory cues.

Finally, if the individual cues have Gaussian distri-

butions but are not conditionally independent, there is a

Bayesian analogue to the treatment of the correlated
case in the previous appendix, treating S0 as an equiv-

alent, independent cue. The covariance matrix, R, is

augmented by one column and one row corresponding

to the prior. The derivation of the MAP estimator for

this case is then identical to the derivation in the pre-

vious appendix.
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