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Noise masking reveals channels for second-order letters
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Abstract

We investigate the channels underlying identification of second-order letters using a critical-band masking paradigm. We find that
observers use a single 1–1.5 octave-wide channel for this task. This channel�s best spatial frequency (c/letter) did not change across dif-
ferent noise conditions (indicating the inability of observers to switch channels to improve signal-to-noise ratio) or across different letter
sizes (indicating scale invariance), for a fixed carrier frequency (c/letter). However, the channel�s best spatial frequency does change with
stimulus carrier frequency (both in c/letter); one is proportional to the other. Following Majaj et al. (Majaj, N. J., Pelli, D. G., Kurshan,
P., & Palomares, M. (2002). The role of spatial frequency channels in letter identification. Vision Research, 42, 1165–1184), we define
‘‘stroke frequency’’ as the line frequency (strokes/deg) in the luminance image. That is, for luminance-defined letters, stroke frequency
is the number of lines (strokes) across each letter divided by letter width. For second-order letters, letter texture stroke frequency is the
number of carrier cycles (luminance lines) within the letter ink area divided by the letter width. Unlike the nonlinear dependence found
for first-order letters (implying scale-dependent processing), for second-order letters the channel frequency is half the letter texture stroke
frequency (suggesting scale-invariant processing).
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanisms for detecting and localizing patterns
defined by variations of luminance have been studied
extensively over the past forty years. It is widely accepted
that such patterns are encoded using a bank of linear filters
that are spatially localized and selective for spatial frequen-
cy. Their properties have been elucidated using such meth-
ods as summation (e.g., Graham & Nachmias, 1971),
adaptation (e.g., Blakemore & Campbell, 1969), and mask-
ing (e.g., Stromeyer & Julesz, 1972; Wilson, McFarlane, &
Phillips, 1983).
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However, the linear filters, also commonly known as
spatial frequency channels, cannot detect all types of pat-
terns. For example, consider Fig. 1. The texture-defined
edges in this image, although apparent, would not be
detected by a such a linear channel and subsequent thresh-
olding or peak detection. This type of visual pattern is an
example of a second-order pattern. The name is derived
from a generic model consisting of (1) a bank of first-order
linear filters that gives enhanced responses to either the
foreground or background texture, but not both, (2) a non-
linearity, and (3) a second bank of linear filters, called sec-
ond-order filters. Models of this form have been proposed
to account for a wide variety of texture discrimination data
(Bergen, 1991; Chubb & Landy, 1991; Landy & Graham,
2004).

Much of the work used to measure the properties of
both the first- and second-order filters involves detection
and discrimination tasks. However, one presumes that this
same machinery is used for the broad variety of tasks the
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Fig. 1. Example stimuli. All five letters used in the experiment are shown
with high modulation contrast and no noise added. For display purposes
here, the carrier frequency (relative to the letter size) has been lowered by
2 octaves.
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visual system faces in daily life. One such task is pattern
identification. In this paper, we concentrate on the task
of identifying letters. Others have considered which first-
order channels are used for the identification of lumi-
nance-defined letters (e.g., Majaj, Pelli, Kurshan, & Palo-
mares, 2002). In this paper, we characterize the second-
order channels that observers use to identify texture-de-
fined letters.

Studies of second-order vision have typically used meth-
ods that are second-order analogues of methods developed
to study sensitivity to luminance-defined form. Typically,
the experiment is translated to the second-order domain
by delivering a sine wave grating, or other desired pattern,
to the second-order channels. This is usually done by using
the desired second-order signal to modulate the contrast of
a luminance-defined carrier pattern. Some first-order chan-
nels are sensitive to the carrier. However, no first-order
channels respond directly to the second-order signal or
modulator because it is not present in the Fourier spectrum
as power at the modulation frequency. Rather, the first two
stages of the model (first-order linear filter and subsequent
nonlinearity) reveal (i.e., demodulate) the signal, presenting
an imperfect version of the modulator to the second-order
channels.

Second-order contrast sensitivity is a measure of the
observer�s sensitivity to texture modulations, and is defined
as the reciprocal of threshold second-order modulation
contrast. A number of studies have measured second-order
contrast sensitivity using a variety of second-order stimuli
including contrast-modulated noise (Jamar & Koenderink,
1985; Schofield & Georgeson, 1999; Sutter, Sperling, &
Chubb, 1995), orientation modulation of a texture pattern
(Kingdom, Keeble, & Moulden, 1995) and modulation be-
tween two differently oriented noise textures (Landy &
Oruç, 2002). Unlike the first-order case, where numerous
independent measurements of the contrast sensitivity func-
tion (CSF, i.e., contrast sensitivity as a function of spatial
frequency) yield similar results, there is some disagreement
among second-order findings. All studies find the second-
order CSF to be broadly tuned, but the shape of this broad
second-order CSF has been found to be low pass (Jamar &
Koenderink, 1985), band pass (Kingdom et al., 1995), or
flat (all pass) (Landy & Oruç, 2002) in different studies
(using different stimuli). All studies have found the sec-
ond-order CSF to be scale invariant: second-order grating
visibility is unaffected by a change in viewing distance (to
a fixed stimulus on the monitor) as long as the carrier is vis-
ible. The first-order CSF is not scale-invariant; contrast
sensitivity depends on spatial frequency in retinal units
(e.g., in c/deg; Robson, 1966). However, second-order con-
trast sensitivity depends on spatial frequency in units rela-
tive to the carrier frequency.

Several recent studies point out intriguing similarities
between letter identification and grating detection. Solo-
mon and Pelli (1994) found that luminance-defined letters,
just like gratings, are detected and identified by a single
spatial frequency channel. Majaj et al. (2002) confirmed
this finding. Despite the broad spectral frequency content
of letters, observers use only a narrow (1.6-octave-wide)
portion of this spectrum to identify them. In addition, they
repeated the experiment using various letter sizes, expecting
to find scale invariance. They expected to find that the
observer used the same portion of the letter spectrum at
all sizes. To their surprise, they found scale-dependence:
observers used a slightly higher frequency band when iden-
tifying large letters and similarly a lower frequency band
when identifying small letters.

Letters may be defined by differences in texture, as well
as differences in luminance. Fig. 1 shows some second-or-
der letters. When demodulated, a second-order letter looks
much like a luminance-defined letter. We wondered
whether second-order letters are identified using second-
order channels in ways that mimic the findings for first-
order letters. Here, we estimate the channel used for
second-order letter identification as a function of letter size
and carrier frequency.

To investigate the channels underlying second-order let-
ter identification, we used a noise-masking paradigm (Maj-
aj et al., 2002; Solomon & Pelli, 1994). Our results support



1 The Sloan font is available at http://psych.nyu.edu/pelli/
software.html.
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the hypothesis that second-order letter identification is
mediated by a single second-order spatial frequency chan-
nel. The channel center frequency (in c/letter) was constant
across all letter sizes, i.e., second-order letter identification
is scale invariant. We also show that threshold elevation by
and large is proportional to second-order noise spectral
density, in parallel with the finding for luminance-defined
signals (see, e.g., Pelli & Farell, 1999).

2. Experiment: Second-order channels for letter

identification

2.1. Introduction

In this experiment, we employed the masking paradigm
described by Solomon and Pelli (1994) to determine the
power gain of the channel mediating second-order letter
identification as a function of spatial frequency. Identifica-
tion thresholds were measured without added noise. This
no-noise threshold serves as a baseline, relative to which
we calculate the threshold elevation caused by low- or
high-pass noises with varying cut-off frequencies. To isolate
and measure the second-order channel, second-order noise
was employed (Section 2.2.3).

Consider first the case of low-pass masking noise. As the
cut-off frequency increases, the masking effect gradually
increases and saturates as the noise cut-off frequency passes
through and then passes beyond the channel pass band. The
slope of the threshold elevation curve is proportional to the
channel power gain at the cut-off frequency. If high-pass
noise is used, the logic is the same. Thus, the slopes of the
high- and low-pass measurements provide independent esti-
mates of the channel gain as a function of frequency.

If the observer uses a fixed channel, then low- and high-
pass noise sweeps should yield similar estimates of the
channel�s tuning curve. However, the observer might use
a different channel in different noise conditions. For exam-
ple, with a low-pass noise the observer might switch to a
channel centered on a higher frequency to improve sig-
nal-to-noise ratio. When the stimulus has a well-defined
frequency (e.g., a grating) this channel switch is called
off-frequency looking by analogy to off-frequency listening
that has been reported in the auditory psychophysics liter-
ature (Lutfi, 1983; Patterson & Nimmo-Smith, 1980). Pelli
(1981) and Perkins and Landy (1991) have demonstrated
that channel switching occurs in vision as well. In principle,
channel switching seems even more advantageous for dis-
criminating broad-band stimuli such as letters than for
detecting a sine wave grating, since broad-band stimuli
provide useful information over a broad range of spatial
frequencies. For luminance-defined letters, Gold, Bennett,
and Sekuler (1999) found that letter identification perfor-
mance for band-pass filtered letters is relatively indepen-
dent of the center frequency of the filter. Parish and
Sperling (1991) also found that observers could utilize a
wide range of spatial frequencies for letter identification.
Thus, if the default channel is masked by noise and there
is information available to the observer elsewhere in the
spectrum, then observers might improve performance by
switching to another channel.

To discover whether our observers switch channels while
performing the second-order letter identification task, we
measured threshold elevation using both low- and high-
pass noise sweeps. If the observer used a fixed channel,
the sum of threshold elevations for low- and high-pass
noise for any given cut-off frequency, fc, should equal the
threshold elevation caused by white noise. This prediction
follows from the assumption that threshold elevation is
proportional to the total noise power passed by the chan-
nel. If the observers were able switch channels, they would
use a higher-frequency channel in low-pass noise and a
lower-frequency channel in high-pass noise. By doing this,
the observers would improve signal-to-noise ratio for the
low- and high-pass noises, making the effect of white noise
appear superadditive: greater than the sum of the threshold
elevations caused by the low- and high-pass noises.

2.2. Methods

2.2.1. Stimuli

In many studies of second-order processing, stimuli are
designed so as to deliver a particular stimulus to the sec-
ond-order linear spatial filters by using that stimulus as a
modulator of a carrier texture. In the present study, our
modulator was a letter corrupted by additive, low- or
high-pass filtered noise, and our carrier was a pair of sine
waves oriented vertically and horizontally. Example no-
noise stimuli are shown in Fig. 1.

The stimuli were constructed as follows. The modulator
was a letter (D, N, R, S or Z, in the Sloan font,1 see Fig. 6),
possibly with added noise. The carrier sine waves were
either 53.2 c/letter (4 c/deg at the standard 87 cm viewing
distance) or 106.4 c/letter. (Note: the letter width at the
standard viewing distance was 13.3�, and by c/letter we al-
ways mean cycles per letter width.) Each stimulus was a
weighted combination of the two carrier patterns, where
a noisy letter acted as the weight function. The vertical
and horizontal sine wave carriers, SV and SH, were treated
as contrast images (i.e., mean luminance was represented
by the value zero). The noise-free letter, M, had a value
of 1 inside the letter area, and 0 in the background. A stim-
ulus L was defined as

Lðx;yÞ ¼ L0 þA mVðx;yÞ½ �1=2SVðx;yÞþ mHðx;yÞ½ �1=2SHðx;yÞ
� �

;

ð1Þ
where

mðx; yÞ ¼ kltMðx; yÞ þ kbgð1�Mðx; yÞÞ þ INðx; yÞ;
mVðx; yÞ ¼ dbmðx; yÞc0e

1
;

mHðx; yÞ ¼ 1� mVðx; yÞ;
ð2Þ
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where mV and mH are weights applied to the vertical and
horizontal carriers SV and SH, respectively. The vertical
carrier�s weight mV takes a value of klt in the letter and
kbg in the background. kbg was fixed at 0.5 so that the back-
ground was a plaid (with equal vertical and horizontal
energy). klt was varied to determine identification thresh-
old. A was a fixed amplitude, set so that stimulus peak con-
trast used the full range of available luminance values. L0

was the mean luminance of the display. IN was a noise im-
age produced by applying a low- or high-pass filter to zero-
mean, white noise.

The weight functions mV and mH were clipped to range
from 0 to 1 (Eq. (2)). This guaranteed that the square roots
were well defined in Eq. (1). The phases of the carrier pat-
terns were chosen randomly for each stimulus. Thus,
SV(x,y) and SH(x,y) were independent, and their variances
add. The square root in Eq. (1) ensured that the variance
(and hence expected root-mean-squared contrast) was con-
stant across the stimulus, and was not a useful cue to the
task (following Watson & Eckert, 1994).

Example stimuli are shown in Fig. 1. As you can see, the
background is plaid, and inside the letters� ‘‘ink’’ area the
vertical grating is more prominent.

2.2.2. Second-order stimulus contrast

For each stimulus, the background area was a plaid.
As second-order letter contrast was increased, the relative
weight of the vertical component was increased in loca-
tions corresponding to the ink area of the letter. For
the analysis that follows, we need a definition of sec-
ond-order stimulus contrast. Any given pixel value is
computed as a weighted sum of the vertical and horizon-
tal carrier gratings, with weights of

ffiffiffiffiffiffi
mV

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mV

p
,

respectively. Thus, the proportion of weight applied to
the vertical carrier is

f ðmVÞ ¼
ffiffiffiffiffiffi
mV

p
ffiffiffiffiffiffi
mV

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mV

p . ð3Þ

We specify second-order contrast as the contrast between
the values of this proportion in the letter and background.
Since the letters we used cover approximately half of the
stimulus area (Fig. 4), we use Michelson contrast c,

c ¼ f ðkltÞ � f ðkbgÞ
f ðkltÞ þ f ðkbgÞ

; ð4Þ

where klt and kbg are the values of mV in the letter and
background, respectively. This is analogous to defining
the vertical component as ‘‘white’’ and the horizontal as
‘‘black’’ in the standard luminance contrast formulation.
Note that alternative definitions of second-order contrast
are possible. One could consider only the weight on the ver-
tical component, f ðmVÞ ¼

ffiffiffiffiffiffi
mV

p
. Also, one could use the

component power rather than the weight, e.g., f(mV) = mV.
These alternative formulations are nearly linearly related
across the range of conditions tested here, and thus using
them would not change any of the conclusions made in this
paper.
2.2.3. Noise

Each noise image, IN, was low- or high-pass filtered,
zero mean, Gaussian white noise. The filters had 100%
modulation transfer on one side of the cut-off, and 0%
on the other. The sum of a letter template and a noise pat-
tern was then used to modulate between the two carrier
patterns (Eqs. (1) and (2)). The noise did not appear as
luminance noise in the stimulus, but rather as a variation
in carrier texture weights. Thus, it was second-order noise.
Demodulation of the stimulus yields the letter template
corrupted by the noise.

For each condition we compute threshold elevation sig-
nal-to-noise ratio by dividing threshold elevation signal
energy by noise spectral density. Within a condition, iden-
tification thresholds were determined by varying the signal
contrast while second-order noise spectral density was
fixed. Across conditions and observers, second-order noise
spectral density was varied over the range 0.04–17.24 deg2

(in an effort to keep identification thresholds within achiev-
able bounds).

2.2.4. Artifactual cues
To ensure that the task was purely second order, it was

important to eliminate all artifactual cues. The edge that
separates the letter and the background is such a cue. It
is true that average luminance, and luminance contrast
on both sides of the edge are the same. But along the edge
there is a sharp luminance discontinuity that could serve as
an additional cue to the task. Therefore, we smoothed the
edges by low-pass filtering the letter templates using a But-
terworth filter

Bðf Þ ¼ 1

1þ ð ffc Þ
2
; ð5Þ

where f denotes frequency, and fc denotes the cut-off
frequency.

In addition to mitigating the edge artifacts, there was
another reason to low-pass filter the letter templates: The
carrier cannot effectively alternate between ‘‘features’’ of
the modulator that are shorter than one period of the car-
rier itself. The carrier frequency is equivalent to the ‘‘rate of
sampling’’ of the modulator. And so, according to the sam-
pling theorem (Bracewell, 1978) we low-pass filtered the
modulator with a cut-off frequency equal to half the carrier
frequency. For example, the cut-off frequency fc was select-
ed to be 26.6 c/letter (30 c/stimulus image) for the lower-
carrier-frequency stimuli (53.2 c/letter carrier).

We also confirmed the absence of any luminance-defined
features that would allow identification of the letters. We
applied a standard edge detector (Shaw, 1979) to our stim-
uli. Any luminance edges that outline the letters should be
visible after this operation. Fig. 2 shows a luminance-de-
fined letter and an example of our second-order letters
(top row). The results of edge detection are shown in the
bottom row. As expected, the edges of the luminance-de-
fined letter were clearly detected. In the second-order case,
the edges of the individual carrier elements have been



Fig. 2. Results of an edge detection algorithm (Shaw, 1979) applied to a
first- and a second-order letter. In the luminance case (left column), the
edges outline the letter. In the second-order case (right column), the edges
of the individual carrier elements have been detected. However, no edges
were found running along the letter borders.
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detected. However, no continuous line segments outlining
the borders of the letter were found.

One type of first-order information that might be used to
perform the letter discrimination task is a difference in the
image power spectra between the different letters. Fig. 3
Fig. 3. Effects of randomizing the Fourier phase coefficients. On the left
are two intact second-order letters. On the right are phase-randomized
versions of these stimuli (a process that leaves the Fourier power spectrum
of the image unchanged). The two right-hand images are not identifiable
as R or S, indicating that Fourier spectral content alone was insufficient to
carry out our task.
shows two second-order letters as well as two phase-ran-
domized versions of each (preserving their power spectra).
It is clear that differences in the power spectrum per se
would have been insufficient for the task, as the two right-
hand images are not readily identifiable as R or S.

Another possible artifactual cue to the task is the ‘‘ink
area’’ of the letter. If the ink area varied substantially,
one could potentially identify letters by the total spectral
power in the vertical orientation (this is again a difference
in the power spectrum), regardless of the shape of the let-
ters. Fig. 4 shows the ink area for the 10 letters of the Sloan
font. We selected five letters for our experiment that have
approximately equal ink areas: D N R S Z. In addition,
Sloan (1951) has shown these letters to have roughly equal
visibility.

2.2.5. Conditions

The first part of the experiment consisted of a total of 14
conditions: letter identification in high- and low-pass sec-
ond-order noises, at six cut-off frequencies ranging from
1.66 to 20.6 c/letter, in addition to the white noise and
no-noise conditions. Example stimuli with low-pass noise
are shown in Fig. 5. Later, the experiment was repeated
using a higher-frequency carrier (double that of the origi-
nal) to see whether second-order letter channels vary with
changes in the carrier. This time, 4–5 cut-off frequencies
were used ranging from 6.65 to 39.9 c/letter (a total of
10–12 noise conditions including the no-noise and white
noise conditions).

2.2.6. Apparatus

The stimuli were computed using the HIPS image pro-
cessing software (Landy, Cohen, & Sperling, 1984). Each
stimulus was 512 · 512 pixels. The stimuli were displayed
on a SONY Trinitron GDM-G500 monitor at 848 · 646
resolution using a computer equipped with a CRS VSG
2/3 frame buffer, and all displays used a linearized lookup
table. The mean luminance was 40 cd/m2. The standard
viewing distance was 87 cm. At this distance the whole
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Fig. 4. Ink areas. Ink areas for all 10 letters in the Sloan font. The letters
used in this study (S, R, D, Z and N, displayed in gray) have
approximately equal values, all covering about half the stimulus image.
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Fig. 5. Illustration of the low-pass noise conditions. Noise cut-off
frequency increases from top to bottom. Signal-to-noise ratio increases
from left to right. In the experiments, signal-to-noise ratio thresholds for
letter identification were determined for various noise cut-offs. For display
purposes, the carrier frequency (relative to letter size) has been lowered by
2 octaves.

Fig. 6. The letters used in the experiment. At the end of each trial the
observers viewed this screen and used the mouse to indicate which letter
they thought had been displayed.

Table 1
Viewing conditions

Distance condition

Half Standard Double Triple

Distance (cm) 43.5 87 174 261
Letter size (deg) 26.6 13.3 6.65 4.43
Low-frequency
carrier (c/deg)

2 4 8 12

High-frequency
carrier (c/deg)

4 8 16 —
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stimulus subtended 15 · 15 deg2, and the letters were
approximately 13.3 deg wide. In some experiments, the
same stimuli were viewed from half, double, and triple this
viewing distance. Each block of trials used three versions of
the five letters (using different noise images) for each con-
trast level. New stimuli were computed for each block of
trials.

2.2.7. Observers

Four observers ran in this experiment. Observers MSL
and IO are authors of this paper. JT and HB were experi-
enced psychophysical observers who were naive to the pur-
pose of the experiment. All four observers had normal, or
corrected-to-normal vision.

2.2.8. Procedure

The task was letter identification (1-interval 5-alterna-
tive forced choice). In each trial observers viewed a fixation
cue for 500 ms, followed by a 250 ms stimulus interval con-
taining one of five possible letters. Finally, the choices
screen (Fig. 6) was displayed until the observer selected a
letter using the mouse. Auditory feedback indicated
whether the choice was correct.

Each block consisted of 100 trials. Within each block the
second-order letter contrast was controlled by two inter-
leaved staircases, each of which ran for 50 trials. One was
a 1-up-1-down staircase converging to 50% correct, and
the other was a 1-up-2-down staircase converging to 71%
correct. One fifth of the trials were full-contrast, no-noise
trials to keep subjects motivated and remind them of what
the stimuli looked like. These easy trials were not included
in the analysis.

Each observer ran 2–4 blocks of each condition in ran-
dom order. For the lower-frequency carrier (53.2 c/letter),
two observers (MSL and IO) repeated the experiment at
half the standard 87 cm distance. One observer (MSL)
repeated the experiment at double the standard distance,
and another (IO) at triple the standard distance. For the
higher-frequency carrier (106.4 c/letter), all observers ran
at the standard distance. In addition to that, three of the
four observers (HB, MSL, IO) repeated the experiment at
half and double the standard viewing distance. The viewing
conditions are summarized in Table 1.

2.2.9. Data analysis

2.2.9.1. Contrast threshold estimates. For each condition,
second-order contrast threshold was calculated by fitting
a cumulative Gaussian curve to the plot of proportion cor-
rect identification (corrected for chance performance,
which was 0.2) as a function of second-order contrast,
using a maximum likelihood criterion. Data from each
block were fitted separately and the threshold estimates
were averaged. Error bars in the plots are standard errors
of the threshold estimates across the 2–4 experimental
blocks run per condition.
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viewing distances. The flat line shows the threshold elevation for white
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2.2.9.2. Channel estimates. We follow the notation of Pelli
and Farell (1999) to describe our experimental design and
data analysis. Contrast energy E is the squared contrast
integrated over the signal. For letter stimuli, this is squared
contrast multiplied by the letter area. A straightforward
way to do this experiment would be to use a constant noise
spectral density N across all conditions (i.e., all cut-off fre-
quencies). This way, threshold elevation depends only on
the channel�s tuning function and the noise cut-off frequen-
cy, and can be used directly to derive it. Threshold eleva-
tion is defined as E+ = E � E0, where E0 is the threshold
contrast energy in the absence of noise, and E is the thresh-
old contrast energy for a given condition with added noise.

In fact, we used various noise densities in different con-
ditions (noise cut-off frequencies). When noise densities are
not constant, threshold elevation depends not only on the
tuning function of the channel and the noise cut-off fre-
quency, but also on the density of the noise. Therefore,
we normalized the threshold elevations by the noise densi-
ties, and report the threshold elevation signal-to-noise ratio

Dþ ¼ Eþ

N
. ð6Þ

We use the symbol D+ in analogy to d
0
of signal detection

theory, but use a capital letter to indicate that the signal-to-
noise ratio we report is in units of signal energy. The chan-
nel tuning curve for each observer was computed by differ-
entiating the D+ curves with respect to cut-off frequency for
both the low-pass and the high-pass noise sweeps. The low-
and high-pass threshold elevation D+ data were fitted (least
squares) by a sigmoid function

y ¼ a
1þ e�bðx�fchannelÞ

þ d; ð7Þ

where x is log noise cut-off frequency, a is a scaling factor,
b determines steepness of the curve (i.e., bandwidth of the
channel), fchannel shifts the function along the x axis (i.e.,
fchannel is the center frequency of the channel), and d is
the shift along the y axis.

If the two derived channels are identical then the observ-
er did not switch channels. To check this, we computed
noise additivity graphs Majaj et al. (2002). We compared
the D+ caused by white noise to the sum of D+�s caused
by a pair of low- and high-pass noises with the same cut-
off frequency. If the observer used the same channel
throughout, the sum of the two should equal the D+ caused
by white noise. For each estimated channel, we plot noise
additivity graphs that show Dþ

lowpassðfcÞ þ Dþ
highpassðfcÞ as a

function of the noise cut-off frequency, fc. If the observer
used a fixed channel, this curve should be flat.

2.3. Results

2.3.1. Channel switching
Noise additivity graphs for two observers and viewing

distances with the lower (53.2 c/letter) and higher
(106.4 c/letter) frequency carriers are plotted in Figs. 7A
and B, respectively. Data for other subjects and viewing
distances were similar. If there is no channel switching,
the data should fall on the flat line that is the threshold ele-
vation for white noise. The noise additivity curves are close
to the predicted flat line. A consistent deviation from this
prediction (especially a dip near the peak of the estimated
channel) might indicate channel switching. No such consis-
tent pattern is visible in our results. We conclude that
observers used the same channel in all noise conditions.

2.3.2. Threshold elevation curves
D+ is shown as a function of noise cut-off frequency for

two observers and viewing distances for the lower (53.2 c/
letter) and higher (106.4 c/letter) frequency carriers in Figs.
8A and B, respectively. Similar data were obtained for all
subjects and viewing distances. The data for both the
low-pass and the high-pass noise conditions are shown.
For low-pass noise, a zero cut-off frequency indicates the
no-noise condition and the highest cut-off frequency is
white noise, or the all-pass condition. As expected, thresh-
old elevation increased by and large monotonically with
cut-off frequency in low-pass noise conditions (and de-
creased in the high-pass noise conditions). Note that the
same sigmoid function (i.e., two identical sigmoids with
opposite signs) was used to fit both the low- and the
high-pass data on a given graph. The fits are quite good,
as expected from the flat noise-additivity results.
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2.3.3. Estimated channels
The derivative of the sigmoid curve fitted to the thresh-

old elevation data yields an estimate of the channel tuning
function. The derived channels for two observers and view-
ing distances for the lower-frequency carrier (53.2 c/letter)
are shown in Fig. 9A. At the standard viewing distance,
the estimated channel center frequency averaged over all
observers is 14 ± 1.2 c/letter (geometric mean ± standard
deviation). There is reasonable consistency across
observers.

What happened when viewing distance was changed?
Note that different viewing distances were implemented
by seating observers at different distances in front of the
same display. Thus, both letter size and carrier frequency
in c/deg changed together, leaving the ratio (carrier
cycles/letter) constant across different viewing conditions
for the given stimulus. If observers used the same channel
(in c/letter) across all viewing distances, that would indicate
scale-invariant letter recognition. That is what we found:
the estimated channel frequency averaged over all observ-
ers and viewing distances was 15.2 ± 1.1 c/letter. The
half-height bandwidth of the channels� power gains, where
bandwidth in octaves was averaged over all observers and
viewing distances, was 1.4 ± 0.6 octaves.

Fig. 9B shows the derived channels for the higher-fre-
quency carrier (106.4 c/letter) for two subjects and viewing
distances. Again we found evidence for scale invariance: At
the standard viewing distance, the estimated channel center
frequency averaged over all observers was 31.4 ± 1.1 c/let-
ter. The estimated channel center frequency averaged over
all viewing distances and observers was 30.9 ± 1.1 c/letter.
The half-height bandwidth of the channels� power gains,
averaged over all observers and viewing distances, was
1.2 ± 0.4 octaves.

Fig. 9C shows derived channel parameters for all sub-
jects and viewing distances, at both low (circle) and high
(square) carrier frequencies. Viewing distance is denoted
by marker face color: white for half, gray for standard,
dark gray for double, and black for triple viewing distance.
There is reasonable consistency among subjects in terms of
channel center frequency, and no systematic change in
bandwidth with viewing distance.

For luminance-defined letters, Majaj et al. (2002) tested
whether letter identification was scale-invariant, using a
wide variety of letter fonts. They anticipated that the chan-
nel used for identification would be a function of letter fre-
quency. But, since letters are broad-band stimuli, one needs
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a method for determining a characteristic frequency for a
given font and letter size. They introduced stroke frequency

fletter for this purpose. It was defined as the number of lines
a horizontal slice at half the letter height intersects, aver-
aged over all letters of an alphabet, divided by the average
width of a letter. This turned out to be a useful definition:
they found that the center frequency of the channel used
for letter identification depends solely on stroke frequency
over a wide variety of fonts and sizes.

In Fig. 10 we plot our results as well as a summary of
those of Majaj et al. (2002). Channel frequency fchannel is
plotted as a function of the stroke frequency fletter. If the
frequency of the channel was identical to the nominal fre-
quency of the stimulus, then the data would fall on the dot-
ted identity line. One data point is plotted from a previous
study (Landy & Oruç, 2002), showing the second-order
channel used to detect a second-order, orientation-modu-
lated sine wave grating. It lies on the identity line as expect-
ed. Scale invariance requires the channel frequency to be
proportional to the nominal letter frequency, resulting in
a line of unit slope in this plot. The solid lines are least-
square fits of lines of unit slope to the data for each of
the carrier frequencies we used. The fits are excellent, indi-
cating scale invariance. The dashed line summarizes the
data of Majaj et al. (2002) for first-order letter identifica-
tion. The slope of this line (0.7) is less than one, indicating
that first-order letter identification is not scale invariant.
Like our data point for detecting a second-order sine wave,
their data (not shown) for detecting first-order sine waves
fall on the identity line.
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When the carrier frequency was doubled, the center fre-
quency of the channel used for letter identification doubled
as well (rising from 15.2 ± 1.1 to 30.9 ± 1.1 c/letter). For
the lower-frequency carrier, the channel center frequency
fchannel = 9fletter, where fletter is the stroke frequency. For
the higher-frequency carrier, fchannel = 20fletter. Thus, we
found that the channel frequency, relative to letter size, is
independent of letter size, but does depend on carrier fre-
quency fcarrier (Fig. 11). The ratio of the carrier frequency
to the frequency of the letter identification channel re-
mained constant at approx. 3:1. This suggests a link be-
tween the scales of first- and second-order channels. This
is consistent with Graham (1994), who estimated a 3–4:1
ratio, although others have suggested larger ratios (Sagi,
1990; Kingdom et al., 1995).

The paradigm used in this experiment depends on the
assumption that the contrast energy of a signal at threshold
is linearly related to the power density of the noise passed
through the channel used in the task. In Appendix A, we
test this assumption and find that it is true over most of
the noise contrast range, but fails at very low noise con-
trasts. In Appendix A, we argue that this nonlinearity
has no impact on the conclusions of this paper.

3. Experiment 2: Second-order template matching

The results show that observers use one fixed channel to
identify second-order letters at a fixed size and carrier fre-
quency, and that if the letter stimulus is scaled, the channel
scales with it, so the observer�s performance is scale invari-
ant. In many studies of vision, there is a concern as to
whether a given result really tells us something about the
visual system itself, rather than merely revealing a property
that follows inevitably from the information available for
the task with the particular stimuli used. This question is
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generally addressed by reference to an ideal (maximum
likelihood) observer performing the same task. If human
sensitivity is a constant, high fraction of ideal sensitivity,
then one concludes that performance is mainly limited by
the information content of the stimuli. Such an ideal
observer would not replicate the scale-dependence of letter
identification found by Majaj et al. (2002).

Chung, Legge, and Tjan (2002) describe a sub-ideal
observer for letter identification that initially filters the
stimulus with a filter matching the human contrast sensitiv-
ity function for luminance modulations, and then adds
white noise. The letter identification task is then carried
out on the resulting noisy, filtered images by an ideal
observer. This is equivalent to having an ideal observer
view the stimulus masked by additive nonwhite noise
(i.e., white noise filtered by the inverse of the CSF). That
noise is the only scale-dependent part of their model; the
subsequent ideal observer would otherwise operate equally
well at all letter sizes. They point out that such a sub-ideal
observer displays scale dependence when tested with dis-
plays of filtered letters with no added stimulus noise. Yet,
any critical-band experiment that succeeds in measuring
large threshold elevations must be swamping the observer�s
equivalent noise. Thus, the additive noise assumed in their
model is negligible in the critical-noise-masking paradigm,
so that their model would, in that paradigm, predict scale-
invariance, contrary to what is found.

The ideal observer for our task (identification of a sec-
ond-order letter in low- or high-pass second-order noise)
is well-defined and requires a calculation of likelihood that
integrates over possible carrier phases and modulator noise
images. Instead of the ideal observer, we have implemented
a somewhat simpler, sub-ideal model that demodulated the
stimulus, followed by template matching. Although this is
not an ideal observer, we believe its threshold elevation
curves are reasonably similar in shape to that of the ideal,
and that it is an appropriate reference against which to
compare human observers� data.

In the model, the stimulus image was convolved with a
filter tuned to one of the two constituent textures. We used
a filter with a Gaussian power gain function centered on
60 c/image (i.e., 53.2 c/letter, the same as the lower carrier
frequency) and 90� (i.e., vertical) with a 0.5 octave frequen-
cy bandwidth and 15 deg orientation bandwidth (the im-
pulse response was a Gabor). After the convolution, a
point-wise nonlinearity (x2) was applied to demodulate
the signal. Finally, the resulting image was cross-correlated
with each of five candidate letters and the letter with the
highest correlation value was chosen.

The model performed the letter identification task using
the same stimuli as the human observers in Experiment 1.
The model was tested on every stimulus image with the
lower-frequency carrier (all conditions, all contrasts, etc.)
in the stimulus set for one observer. The percentage correct
was computed for the model for each contrast level. A psy-
chometric function was fit and thresholds were calculated
in the same way as for the human observers.
D+s for the model are plotted in Fig. 12A. As expected,
the model performance degrades with increasing noise
bandwidth in both the low- and high-pass conditions. As
with the human observers, the derivative of these plots
yields an estimated ‘‘channel’’ for the model observer, even
though the model has no second-order filter (it cross-corre-
lates with the full letter templates). These estimated chan-
nels (Fig. 12B) are quite different from the band-pass
curves found for human observers. For comparison, we
plot a channel (dashed curve) that represent average hu-
man data (15.2 c/letter center frequency, and 1.4-octave
bandwidth), along with the model results. The model seems
to peak at no higher than 2–4 c/letter, a factor of four or
more below the 15.2 c/letter peak frequency for the human
data. We conclude that the channels found for human let-
ter identification measured in Experiment 1 are real prop-
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erties of the human observers, and not inevitable conse-
quences of the task and stimuli.

In addition, the model performed the letter identifica-
tion task for different noise levels as in Experiment 3 (see
Appendix A). Unlike the human observers, the model�s
threshold energy increased linearly over the entire range
as noise density increased.

4. Discussion

It is usually assumed that observers employ the channel
that is most sensitive to the stimulus in detection tasks,
and most sensitive to stimulus differences in discrimina-
tion tasks. In sine wave grating detection there is clear
evidence for this. Both first- and second-order studies
have found channels centered at the frequency of the tar-
get sine wave. In addition, if a first-order stimulus is pre-
sented in noise, observers shift to a channel less affected
by the noise (Pelli, 1981; Perkins & Landy, 1991). In other
words, they use a channel with better signal-to-noise
ratio.

Unlike sine wave gratings, where all power is at a single
spatial frequency, letters are broad-band signals. Identifica-
tion efficiencies for band-pass filtered letters are equally
good for a wide range of filter center frequencies (Gold
et al., 1999). When identifying broad-band signals, such
as letters, it is reasonable to expect observers to utilize
information at all available frequencies. At the very least,
one would expect an observer to switch channels when a,
perhaps preferred, portion of the spectrum is corrupted
with noise. Surprisingly, we find this not to be the case.
Observers identify second-order letters using a single, sec-
ond-order spatial frequency channel and do not switch
channels with changes in the noise spectrum. The channel
used by the subject depends on the stroke frequency and
carrier frequency of the letter. For the lower-frequency car-
rier (53.2 c/letter) observers used a channel with average
peak frequency of 15.2 ± 1.1 c/letter and a 1.4 ± 0.6 octave
bandwidth at all viewing distances. For the higher-frequen-
cy carrier (106.4 c/letter) average peak channel frequency
was 30.9 ± 1.1 c/letter, and average channel bandwidth
was 1.2 ± 0.4 at all viewing distances. Observers were un-
able to switch channels to avoid noise. These results are
consistent with the findings of Majaj et al. (2002) for
first-order letter identification.

The channel used for second-order letter identification
scales with letter size, unlike the first-order case. Why
does one find scale dependence in first-order letter identi-
fication, and not in second order? The ideal observer uses
information in all useful frequency bands of the letter
spectrum. But human observers are not limited only by
the available letter identity information in the spectrum.
We are not equally sensitive to all spatial frequencies.
In the absence of added stimulus noise, one would expect
that the channel used by an observer would be biased to-
ward the peak of the CSF. This is essentially the sugges-
tion of Chung et al. (2002) that the channels found for
letter identification are determined by the combination
of the human CSF and the available letter identity infor-
mation in the spectrum. Perhaps this scale-dependent
behavior persists, though no longer adaptive, with added
stimulus noise, as in critical-band masking experiments.
The second-order CSF is scale invariant (Jamar & Koend-
erink, 1985; Kingdom et al., 1995; Landy & Oruç, 2002;
Schofield & Georgeson, 1999; Sutter et al., 1995). Thus,
by a similar argument, one would expect second-order let-
ter identification to be scale invariant as well, which is
precisely what we found.

How does the channel frequency compare for first-order
and second-order letter identification? We found that chan-
nel frequency depended on carrier frequency (Fig. 10) using
a definition of stroke frequency based on the modulator
(the Sloan font letter template). However, suppose we con-
sidered the carrier texture, although it is random, to be an
intrinsic part of the second-order letter font which increas-
es its complexity. This would increase the nominal stroke
frequency much as the extra curlicues on a fancy script font
increase stroke frequency. Fig. 13 replots the data of
Fig. 10 using such a definition. In particular, we define let-
ter texture stroke frequency fstroke for second-order letters
as follows. Along a horizontal slice through the letter we
count the number of carrier cycles within the letter ink area
and divide by the letter width. With this revised definition
of stroke frequency, the data for the two carriers now
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superimpose, so that now second-order letter identification
may be described as a function solely of letter texture
stroke frequency. However, the channels found for sec-
ond-order letters have lower peak frequency than those
for first order for similar letter stroke frequencies.

5. Conclusions

1. Threshold contrast energy to identify a second-order let-
ter increased linearly with noise power spectral density
of nonwhite second-order noise masks at all supra-
threshold noise levels tested. However, to our surprise,
threshold increased slightly when the noise was removed
entirely (see Appendix A). Even so, these results validate
the linearity assumption that underlies the procedure for
estimating channel gain from threshold measurements
as a function of noise spatial frequency cut-off. Each
channel�s gain as a function of frequency is summarized
by its center frequency, and we identify the channel by
its center frequency.

2. As previously found for first-order letters, the channel
used by observers to identify second-order letters is inde-
pendent of the noise spectrum. This implies that the
channel is determined by the signal and task; the
observer cannot switch to another channel to avoid
the noise.

3. As previously found for first-order letters, for second-or-
der letters the channel frequency is wholly determined
by the stroke frequency of the signal.

4. For second-order letters the channel frequency is half
the letter texture stroke frequency, fchannel = 0.5fstroke.
Thus, identification of second-order letters is scale
invariant. This is unlike first-order letters for which
the channel frequency is greater than stroke frequency,
following a nonlinear power law, fchannel / f 2=3

stroke, which
is scale dependent.
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Appendix A. Experiment 3: Dependence of D+ on noise level

A.1. Introduction

The paradigm used in Experiment 1 depends on the
assumption that the contrast energy of a signal at threshold
is related linearly to the power density of the noise passed
through the channel used in the task. In other words

E ¼ kN þ l; ð8Þ
where E is the threshold contrast energy, N is the noise
power density, and k and l are constants. In our experi-
ments, we first measure threshold in the absence of external
noise (N = 0), so that E0 = l. Threshold elevation is
E+ = E�E0 = kN, and therefore threshold elevation sig-
nal-to-noise ratio is

Dþ ¼ Eþ

N
¼ k. ð9Þ

In other words, if the linearity assumption is true, then D+

is independent of the noise density at which it is measured.
Since we varied noise power across conditions, this
assumption is crucial, as the estimated channel shape could
otherwise change if we repeated the experiment using a dif-
ferent set of noise densities.

Pelli (1981) showed that the contrast energy of a first-or-
der signal at threshold is related linearly to the power spec-
tral density of white noise. Solomon (2000) tested the
assumption of linearity for high- and low-pass noise masks
with a wide range of cut-off frequencies and found that it
holds for most cases tested. In Experiment 1, most condi-
tions involved nonwhite noise masks. So, in Experiment 3
we test whether threshold contrast energy is a linear func-
tion of noise power for one choice of letter size and low-
pass noise.

A.2. Methods

The stimuli and task were similar to those of Expt. 1.
Here, we used only one low-pass noise with cut-off at
6.65 c/letter (0.5 c/deg at the standard viewing distance).
There were six conditions with noise densities ranging from
0.068 to 0.44 deg2, plus the no-noise condition. The lower-
frequency carrier was used, viewed from the standard view-
ing distance (87 cm). Three observers participated in this
experiment.

A.3. Results

Fig. 14 shows the results for all observers. Threshold
contrast energy, E, is plotted as a function of noise density,
N. The results are surprising: for all subjects, the addition
of a small amount of noise to a noise-free stimulus reduces
second-order letter identification contrast threshold. Addi-
tional noise results in a steady, linear increase in threshold.
We do not have a good explanation as to how noise aids
identificaiton. A little bit of noise improves second-order
letter identification, but that effect is overwhelmed by noise
masking as noise power is increased.

The results in Fig. 14 may remind the reader of the ‘‘dip-
per functions’’ that result from increment threshold exper-
iments (e.g., Nachmias & Sansbury, 1974), wherein
contrast discrimination of a test pattern is easier on a ped-
estal of that same pattern having near-threshold contrast
than on a uniform background. However, the results in
Fig. 14 show an improvement in letter identification on a
background of noise, unrelated to the pattern to be identi-
fied. Our result is analogous to the finding of stochastic res-
onance in some biological systems (e.g., Bezrukov &
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Vodyanoy, 1997) but has not been found for detection of
luminance stimuli (Pelli & Farell, 1999).

The slope of the linear portion of these curves corre-
sponds to signal-to-noise ratio (D+). However, in Experi-
ment 1, signal-to-noise ratio was computed as a ratio of
threshold contrast energy at a fairly high noise level and
E0. Given the increased threshold for the no-noise case rel-
ative to low-noise stimuli, this should result in an underes-
timate of D+. We argue that this effect is small and has no
consequence for the results reported in Experiment 1. First,
in all noise conditions of Experiment 1 we used noise den-
sities that produced thresholds as high as those of the high-
est noise density we used in Expt. 3, so that the slope
estimated using E0 should differ little from the true slope
(D+). Also note that the noise densities used for the high-
pass noises were much lower than those used for the low-
pass noises. If the nonlinearity in Fig. 14 had a conse-
quence for our results, we would expect all high-pass D+

estimates to be systematically lower than those in the
low-pass conditions. This was not the case. Finally, we
can compare the slopes of the lines in Fig. 14 with the esti-
mates of D+ for corresponding conditions in Expt. 1. The
estimates from Experiments 1 and 3 for observer IO were
10.96 and 12.46, for MSL: 9.81 and 10.59, and for JT:
11.35 and 8.13, indicating close agreement (within the stan-
dard errors indicated by the error bars in Fig. 8).
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