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Despite the common intuition that object recognition processes should be relatively scale invariant, a number of studies
show that this is not the case. Using a critical-band masking paradigm, we examined the pattern of scale dependence of
diagnostic spatial frequencies across a range of stimuli that varied in participants’ prior experience and the ‘ecological
significance’ of the stimuli, by which we mean the degree of universality and recency of the development of the stimulus in
human culture, letters being an example of a culturally arbitrary stimulus and faces a universal one. We found scale
dependence for letters, mirror-image letters, and novel shapes, consistent with prior results, as well as for inverted faces.
However, upright faces showed a relatively scale-invariant pattern especially for face sizes that corresponded to those
encountered in typical social interactions. This suggests an important difference between the processing of faces and other
objects that may reflect their unique status as stimuli.
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Introduction

Object recognition is one of the most complex tasks the
visual system faces. Images of objects undergo severe
transformations due to variations in location, size, ori-
entation, and illumination. This presents a challenge to
any recognition algorithm, whether biological or computa-
tional, as recognition of the object should be invariant to
image variations that reflect viewing conditions, while
staying sensitive to those image properties that reflect the
difference between different objects. Human object rec-
ognition is exquisitely robust in this respect. Consider the
font and size changes one faces in reading. For instance,
the two characters, A and A are readily identifiable as the
same letter even though the corresponding physical
stimuli differ substantially.
Invariance to size has been demonstrated for various

aspects of human object recognition. For example, train-
ing with different-size exemplars provided similar benefits
in an object naming task as training with same-size stimuli
(Furmanski & Engel, 2000). Another study of object

naming found that the magnitude of a priming effect did
not depend on whether the sizes of prime and test stimuli
matched (Biederman & Cooper, 1992). Efficiency of letter
identification and reading rate are only weakly affected by
changes in letter size (Legge, Pelli, Rubin, & Schleske,
1985; Parish & Sperling, 1991; Pelli, Burns, Farell, &
Moore-Page, 2006).
The fact that the visual performance of human observers

is found to be scale invariant can be interpreted as
indicating that the underlying recognition processes must
also be scale invariant. However, recent evidence suggests
otherwise. Majaj, Pelli, Kurshan, and Palomares (2002)
have shown that the critical band of spatial frequencies for
recognizing letters changes with letter size. Large letters
are recognized with their details (higher frequency
components) whereas small letters are recognized with
their large strokes (lower frequency components), a
finding that has been replicated by others (Chung, Legge,
& Tjan, 2002; Oruc & Landy, 2009).
If object-recognition processes are inherently scale

dependent, why do we not notice this in our everyday
visual experience? The hybrid images of Oliva, Torralba,
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and Schyns (2006) provide an example where the scale-
dependent nature of object perception is evident. Hybrid
images are composites of multiple visual objects, each
occupying a separate frequency band. Scale-invariant
processing would mean that the percept of hybrid images
would be the same regardless of image size. In reality, at
different sizes different components of the hybrid image
dominate the overall percept. For example, in Figure 1
most viewers report seeing Botticelli’s Venus in the large
image at the top, and the iconic “Love” image by Robert
Indiana in the small image at the bottom. Actually, these
two images are identical, simply printed at different sizes,
which can be verified by standing 3–5 m away from the
page or screen and observing that Love replaces Venus in
the larger top image at this far viewing distance. Design-
ing hybrid images that work requires knowledge of
preferred, or critical, frequency bands for the component
visual objects at various sizes and provides phenomeno-
logical evidence of scale dependence in our object
recognition system. Such demonstrations are valuable for
illustration purposes but do not provide proof of scale
dependence. The most convincing evidence instead comes
from systematic psychophysical experimentation (Chung
et al., 2002; Chung & Tjan, 2009; Majaj et al., 2002; Oruc
& Landy, 2009).

It was initially assumed that scale dependence reflected
constraints on visual contrast sensitivity in human observ-
ers (Chung et al., 2002; Oliva et al., 2006; Oruc, 2003;
Oruc, Landy, & Pelli, 2006). This account is based on the
shape of the contrast sensitivity function (the CSF-based
account), i.e., the fact that human sensitivity for very low
and high spatial frequencies is limited compared to middle
frequencies. Changes in object size can thus render some
frequency components of an object hard to detect. For
example, higher frequency components of a letter may be
easily discerned when the letter is large, but when the
letter is small these components will be located in even
higher spatial frequencies as far as the retinal image is
concerned, frequencies to which humans are far less
sensitive. The pattern of scale dependence in human
observers is in qualitative agreement with the predictions
of the CSF-based account, in so far as the changes in
preferred frequencies are in the expected direction (Chung
et al., 2002; Oruc, 2003; Oruc et al., 2006). However, this
account has recently been challenged. For example, one
can make contrast sensitivity relatively equivalent across
all spatial frequencies, i.e., obtain a considerably flatter
CSF, by the addition of external white noise. Insensitivity
to a particular spatial frequency is often modeled through
the presence of higher internal noise in the neural
processing of that stimulus (Ahumada & Watson, 1985).
In other words, for higher and lower spatial frequencies,
internal noise exceeds that for the middle frequencies.
Consequently, the addition of high-power external white
noise to the stimuli swamps the internal noise and the
relatively minor differences in the internal noise become
negligible. As a result, thresholds for all frequencies are
raised considerably, and the characteristic shape of the
CSF is rendered relatively flat. If the CSF-based account
is correct, addition of external white noise should
eliminate scale dependence, but it does not (Oruc &
Landy, 2009), a finding that demonstrates that scale
dependence has a deeper origin than low-level constraints
on contrast sensitivity.
Many of these observations on scale dependence derive

from experiments using letters as stimuli. One important
question is whether such results generalize to all other
objects, or if there are some fundamental differences
between certain types of objects that may affect the
results. Letters form an interesting class of stimuli.
Although letters and written text may have been designed
and in time tailored to broadly suit basic human visual
capabilities, they remain an artificial class with which
humans develop an arbitrary expertise that is culturally
determined. Whether one develops an expertise for
English or Korean symbols is an accident of birth or
education. It is thus unlikely that the human brain has
hard-wired neural machinery for recognizing a specific
writing system, as literacy is a relatively recent phenom-
enon and human scripts differ in form significantly from
one culture to another. One could question whether the
lack of scale invariance found with letters reflects the

Figure 1. A hybrid image. Most people perceive the Venus of
Botticelli at the top and the iconic Love image by Robert Indiana at
the bottom, despite the fact that the bottom image is the same as
the top image displayed at a smaller size. The reader is invited to
view the top image from a distance to confirm that the dominant
percept changes at this distance from Venus to Love, thus
verifying that the different percepts in the top and bottom images
are due to difference in size, not due to a printing artifact. This
occurs because the scale at which an image is observed has an
impact on what is perceived in that image. The hybrid image is
designed to highlight this inherent scale dependence in human
object recognition.
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arbitrary and artificial nature of written text. If so, it would
be of interest to examine scale dependence with stimuli
that have greater universality and longer evolutionary
significance for humans: faces, in particular, may con-
stitute such a class.
We examined the degree of scale dependence for five

sets of stimuli that we could characterize in terms of two
basic factors: experience and evolutionary significance
(Figure 2). (1) Letters constitute a stimulus set with which
literate subjects have a high degree of experience, but
which as stimuli have low evolutionary significance, for
the reasons stated above. (2) Mirror-image letters we
considered to represent an intermediate level for experi-
ence, in so far as subjects have far less exposure to such
letters but can still easily recognize these as transformed
letters, and low evolutionary significance set. (3) Novel
shapes are those with low experience and low evolu-
tionary significance. (4) Upright faces are as a stimulus set
with high evolutionary significance and a high degree of
experience, as all humans are raised with significant daily
exposure to upright faces. (5) Inverted faces represent
high evolutionary significance and low/intermediate
degree of experience, in so far as faces tend to be
encountered far more frequently in the upright orientation.
We used critical band masking (Solomon & Pelli, 1994) to
estimate the spatial frequencies that are predominantly
used in recognizing these stimuli at various sizes and
determined how these critical frequencies change with
size.
If scale invariance requires evolutionary time scales to

be built into specialized neural mechanisms, then evi-
dence for scale invariance should only be found for the
face stimuli. Furthermore, if experience has an impact,

then the degree of scale dependence should be less for
those stimulus classes with which humans have more
experience and familiarity.

Methods

Subjects

Ten subjects (7 females, ages 18–33 years) with normal
or corrected-to-normal vision participated in this study.
Subjects completed all size conditions of one or more
experiments in which they participated, with two excep-
tions (for details, see Table 1). Because of the lengthy
nature of these experiments, not all subjects did all
experiments. Rather, each experiment included a different
subset of the subjects. Seven subjects participated in the
upright faces experiment, five subjects participated in the
letters and inverted faces experiments, and four subjects
participated in the mirror-image letters and novel shapes
experiments. A detailed summary of subject participation
in each experiment is shown in Table 1. The protocol was
approved by the review boards of the University of British
Columbia and Vancouver Hospital, and informed consent
was obtained in accordance with the principles in the
Declaration of Helsinki.

Experimental setup

The experimental procedure was implemented on a
computer equipped with a Cambridge Research Systems

Figure 2. Stimulus sets. All five classes of stimuli are shown. From top to bottom: Experiment 1, letters; Experiment 2, mirror-image letters;
Experiment 3, novel shapes; Experiment 4, upright faces; and Experiment 5, inverted faces. Each stimulus class contains five individual
stimuli. Discrimination contrast thresholds for each category were measured using a 5-alternative forced-choice paradigm.
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(CRS) VSG 2/3 graphics card and SONY Trinitron 17 in
monitor (model GDM-200 PS). The display was gamma
corrected using OptiCAL photometer (Model OP200-E) and
software provided by CRS. Gamma correction was repeated
regularly every month to ensure stable luminance calibra-
tion. Mean luminance of the display was 40 cd/m2. The
experiment was programmed in Matlab (www.mathworks.
com) using tools from CRS VSG Toolbox for Matlab and
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Stimuli

As stated above, five classes of stimuli were used:
(1) letters, (2) mirror-image letters, (3) novel shapes,
(4) upright faces, and (5) inverted faces (Figure 2). Each
stimulus class contained five individual stimuli, e.g., five
letters. All stimuli were 4.7 deg wide at the standard size.
Large (double, i.e., 9.5 deg), small (half, i.e., 2.35 deg),
and very small (one third, i.e., 1.58 deg) sizes were
implemented by displaying the stimuli at half, double, and
triple the standard viewing distance. Letters, mirror-image
letters, and novel shapes were viewed at three sizes (very
small, standard, and large) and upright faces and inverted
faces were viewed at four sizes (very small, small,
standard, and large). The standard viewing distance was
91.4 cm for letters, mirror-image letters and novel shapes,
and 107 cm for upright and inverted faces. All stimuli
were grayscale and displayed on a uniform gray back-
ground at mean luminance.

Letters, mirror-image letters, and novel shapes

Five letters (D, N, R, S, and Z) in Sloan font (Pelli,
Robson, & Wilkins, 1988; available at http://www.psych.
nyu.edu/pelli/software.html) were used. These stimuli
were the same as the letter stimuli used in a previous

study (Oruc & Landy, 2009). Letters represent the high-
experience set based on reading experience on the order of
tens of years. Mirror-image letters were left-right reversed
versions of the letter stimuli. Mirror-image letters con-
stitute an intermediate-experience set because they are
recognized at once and thus share in some of the training
for regular letters. However, most observers have had little
practice with mirror-image letters. The novel shapes
represent the low-experience set. To create the novel
shape stimuli we designed arbitrary patterns composed of
simple strokes on a uniform background. In this respect,
the novel shape stimuli were not unlike letters. While all
our observers were highly familiar with the letters, they
did not have any prior experience with our novel stimulus
set and did not receive any experimental training on these
before starting the experiment.
We specified Weber contrast for all three types of

stimuli (letters, mirror-image letters, novel shapes) as the
increment in luminance above the mean luminance,
divided by the mean luminance. Stimuli were displayed
on a uniform gray background at mean luminance.
Stimulus luminance values varied between mean lumi-
nance (0% contrast) and maximum luminance (100%
contrast). All three types of stimuli were approximately
240 pixels wide, corresponding to 4.7 deg at the viewing
distance of 91.4 cm.

Upright and inverted faces

Five female faces displaying a neutral expression were
selected from the Karolinska Database of Emotional Faces
(Lundqvist & Litton, 1998). Face images were converted
to grayscale using Adobe Photoshop CS 8.0 (www.adobe.
com). Faces were seen through an oval aperture that was
283 pixels at the widest point, corresponding to 4.7 deg at
the viewing distance of 107 cm. The viewing distances for
the upright and inverted face stimuli were slightly different

Experiments

Viewing distance

3� 2� Standard Half

Experiment 1: letters CF, IO*, KD*,
KL, LD

– CF, IO*, KD*,
KL, LD

CF, IO*, KD*,
KL, LD

Experiment 2: mirror-image
letters

BS, CF, IO, KL – BS, CF, IO, KL BS, CF, IO, KL

Experiment 3: novel shapes BS, CF, IO, KL – BS, CF, IO, KL BS, CF, IO, KL
Experiment 4: upright faces CF, IO, JDK,

KD, SR, NP
CF, IO, JDK,
KD, SR, GL

CF, IO, JDK, KD,
SR, NP, GL

CF, IO, JDK, KD,
SR, NP, GL

Experiment 5: inverted faces BS, JDK, KD,
IO, SR

BS, JDK, KD,
IO, SR

BS, JDK, KD,
IO, SR

BS, JDK, KD,
IO, SR

Table 1. Summary of subject participation. Ten subjects (7 females, ages 18–33 years) participated in the study: BS, CF, GL, IO, JDK, KD,
KL, LD, NP, and SR. Each subject participated in one or more of the five experiments. Participants completed all size conditions of the
experiment(s) they took part in, with two exceptions: Experiment 4, NP at 2�, and GL at 3�. Note: *The Letters data of IO and KD have
been published in a previous study (Oruc & Landy, 2009) and reproduced here.
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from that for letters, mirror-image letters, and novel shapes
to obtain equal width in visual angles for stimuli with
different width in pixels. Faces were aligned spatially
within the oval aperture by horizontally centering the tip of
the nose and adjusting vertical position to set pupil height to
the same level across all faces. Care was taken to ensure
that faces chosen lacked obviously distinguishing marks to
avoid discrimination based on trivial differences.
We specified root-mean-squared (RMS) contrast for

face stimuli, defined as the standard deviation of lumi-
nance divided by mean luminance. To ensure standard
contrast across all face images prior to experimental
manipulation of contrast for threshold measurements,
mean luminance was set to 0.5 (half maximum luminance)
and RMS contrast inside the oval aperture was normalized
to 1. All image manipulation including overlaying an oval
mask, horizontal and vertical aligning, and luminance and
contrast normalizations were performed using in-house
scripts in Matlab (www.mathworks.com).

Noise

There were sixteen noise conditions, including eight
low-pass and seven high-pass filtered noises, in addition to
a no-noise condition. The noise conditions and the
generation of noise masks follow methods used in Oruc
and Landy (2009). Noise masks were generated by low- or

high-pass filtering Gaussian white noise (40% RMS
contrast prior to filtering corresponding to a two-sided
noise spectral density of 6.1 � 10-5 deg2 at 91.4 cm
viewing distance) at cutoff frequencies ranging from 0.1 to
17 cpd (at 91.4 cm viewing distance). Each cutoff
frequency defined a complementary pair of low-pass and
high-pass noise masks that added up to the low-pass noise
mask with the highest cutoff. Noise contrast was fixed
throughout all five experiments. Low-pass filters were
radially symmetrical smooth Butterworth filters defined as

B fð Þ ¼ 1

ð1þ f=fcÞ10
; ð1Þ

where f denotes frequency, and fc denotes cutoff fre-
quency. Corresponding high-pass filters were defined as
1 j B( f ).
We pre-computed noise images that were 16 times

larger in area than the actual stimuli (i.e., 4� larger in size
in both dimensions). At the start of each block, the
appropriate noise image for that block was loaded in the
memory. A new noise mask at each trial was obtained by
first circularly shifting the pre-computed large noise
image by random offsets in both dimensions and then
assigning the top left quadrant as the current noise mask.
New noise images were pre-computed for every block.

Procedure

We measured contrast thresholds for identification of
1 out of 5 stimuli within a given category embedded in
various low- or high-pass filtered noise masks. At each
trial, one stimulus from the current category, e.g., the
letter Z, out of five alternatives, e.g., D, N, R, S, Z, was
shown, with or without added noise according to the trial
type. The observer’s task was to indicate which one of the
five letters they saw. A trial consisted of the following
sequence of displays: a 150-ms fixation cross, a 150-ms
blank, a 150-ms stimulus display, a 150-ms blank, and
finally a choice screen displaying all five alternatives that
remained visible until the observer responded (Figure 3).
The observer entered their response using keys on the
computer keypad that spatially corresponded to the
choices screen display. An auditory signal provided
feedback indicating whether the response was correct
(single beep) or incorrect (double beeps). All five experi-
ments used the identical procedure with different stimulus
sets.
The experimental trials were blocked by noise type,

resulting in 16 blocks corresponding to the 16 noise
conditions (seven high-pass, eight low-pass, and no-noise),
completed in a random order. In each block, two estimates
of the discrimination threshold for the given noise
condition were measured via two randomly interleaved

Figure 3. Sequence of events in a typical trial. At each trial one of
five possible stimuli (of a fixed stimulus class) is shown for 150 ms,
with or without added visual noise. The observer indicates which
stimulus they saw by choosing it from a choice display that contains
the set of all alternatives. In this example, a typical trial from
Experiment 1 is shown where the stimulus class is letters. The
procedure is identical for the other stimulus classes/experiments:
mirror-image letters, novel shapes, upright faces, and inverted
faces.
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staircases, each lasting 40 trials. Staircases were imple-
mented using the Quest procedure (Watson & Pelli, 1983)
in Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)
for Matlab. A 40-trial warm-up block started each session
to allow the subjects to accommodate to the setting and
the experimental procedure.
For letters, mirror-image letters, and novel shapes,

subjects completed three size versions (large, standard,
and very small) in a random order. For upright face and
inverted face experiments, subjects completed four size
versions (large, standard, small, and very small) in a
random order.
To ensure sufficient familiarity with the stimuli,

subjects completed one practice session of 1280 trials
(lasting approximately 1 hour) at the standard size prior to
the experimental sessions with all stimulus classes except
the novel shape stimulus. No practice session was
provided for the experiment with novel shape stimulus
category to keep exposure minimal prior to experimental
data collection.

Data analysis
Contrast thresholds

In each block, two estimates of the contrast threshold in
a given noise condition are measured by two randomly
interleaved staircases. Observers completed 1–3 blocks for
each noise type, resulting in 2–6 threshold estimates.
Threshold elevation was computed as the difference
between squared threshold contrast (averaged across the
2–6 independent estimates) in a given noise condition and
the no-noise condition, which served as the baseline.

Critical frequencies

Threshold elevations increased following a sigmoidal
trend for the low-pass noises as the cutoff frequency was
increased. As expected, the reverse pattern was evident for

the high-pass noise conditions: Threshold elevation was
maximum at the lowest cutoff values and gradually
decreased to baseline with increasing cutoffs. A cumu-
lative Gaussian was fit to the low-pass threshold elevation
data as a function of the logarithm of the noise cutoff
frequency. Similarly, a reversed cumulative Gaussian was
independently fit to the high-pass threshold elevation data.
The derivative of the cumulative Gaussian divided by f,
the cutoff frequency, yielded the channel gain. Based on
previous results, we expected a moderate degree of off-
frequency looking or channel switching (Oruc & Landy,
2009). Therefore, the critical spatial frequency in each
condition was estimated by averaging the peak frequen-
cies of the two channel gains independently obtained from
the low-pass and high-pass threshold elevation curves.
Figure 4 shows example data sets from each one of the
five experiments (stimulus categories) to illustrate the data
analysis. Data for other subjects and stimulus sizes
showed a similar pattern in general and were analyzed in
the same way (for example data sets plotted across all
sizes for each of the five categories for individual subjects,
see Supplementary Figure 1).

Results

Figure 5 shows the results for all five experiments. We
plot critical spatial frequencies as a function of stimulus
size. Figures 5A–5E show group data pooled over all
subjects in each experiment. The results for letter recog-
nition replicated the data of Majaj et al. (2002), which are
shown superimposed on the same graph (Figure 5A). As
expected, when letters gets larger, the critical frequency
band for letter recognition shifts to higher values in units
of object frequency (i.e., cycle/letter), characterizing the
scale-dependent nature of the process as described before.
(If the process was scale invariant, the critical frequency
as expressed in units of object frequency would not
change with changes in stimulus size.) We also find that
both the mirror-image letter (Figure 5B) and novel shape
(Figure 5C) results are very similar to that of letter
recognition.
On the other hand, the results for upright faces differ

from the others and show a distinct bi-phasic pattern
(Figure 5D). For small sizes a scale-dependent pattern is
evident where critical frequencies (in cycle/face-width)
increase with size. However, for larger sizes, the critical
frequency curve flattens and displays a relatively scale-
invariant pattern in which the critical frequency is fixed in
units of object frequency and does not continue to
increase further with increasing size. The inverted face
data are virtually identical to the upright face data at small
sizes but do not show an indication of leveling off at
larger sizes. In other words, unlike the upright faces,

Figure 4. Estimation of critical spatial frequency bands: sample
data sets from the five experiments. On the left, threshold
elevation is plotted as a function of noise cutoff frequency for the
low-pass (solid curve) and high-pass (dashed curve) noise
masks. Threshold elevation, defined as the difference between
squared contrast thresholds at a noise condition and at the no-
noise condition (baseline), increases monotonically with noise
cutoff frequency for low-pass noise masks (circles) and monotoni-
cally decreases with noise cutoff frequency for the high-pass noise
masks (squares). Cumulative Gaussians were independently fit to
the low-pass and high-pass data. The derivative of the threshold
elevation curves divided by cutoff frequency provides an estimate
of the power gain. On the right, the two estimates of the power
gains obtained independently from the low- and high-pass curves
are shown. The peak frequencies estimated from the two curves
are averaged to yield the critical spatial frequency at the given
condition.
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inverted faces show a single mode with scale dependency,
similar to that of the letters.
A closer look at the upright faces data shows that the

deflection, or bend, that is apparent in the group data for
larger faces (Figure 5D) is in fact consistent across all
seven subjects, plotted separately in Figure 6A. A
Kruskal–Wallis one-way ANOVA showed that main
effect of size on channel frequency was significant for
upright faces (p G 0.05). Pairwise comparisons using
Wilcoxon signed-rank tests showed significant differences
between all size pairs (all p’s G 0.05, one tailed) with the
exception of standard and large size (p 9 0.2), consistent
with the observed pattern that the critical frequencies
increase with size at first, but beyond a certain size this
trend of increase fades.
To further examine whether this pattern shift represents

a flattening effect or a drop in channel frequency with
larger sizes, we had one subject sample the sizes more
densely and complete the experiment at nine sizes
(compared to the four in our original design). This data
set, shown in Figure 6B, is fit well by a cumulative
Gaussian and thus confirms that the upright face recog-
nition is characterized by two distinct phases, one for
small faces showing a scale-dependent pattern in which

channel frequencies increase with size, and one for larger
faces, showing a scale-invariant pattern in which channel
frequency is constant, independent of size.
We have also looked at the width of the channel gains

across our five stimulus classes. We found that mean
width (full bandwidth at half height) overall was 1.69 T
0.83 octaves (mean T SD) consistent with former reports
for letters (Chung et al., 2002; Majaj et al., 2002; Oruc &
Landy, 2009) with similar bandwidths for the different
stimulus classes (faces: 1.61 T 0.82, inverted faces: 1.88 T
0.89, letters: 1.62 T 0.84, mirror-image letters: 1.77 T 0.82,
novel shapes: 1.53 T 0.76). Overall, there was no
indication that stimulus size or category affected band-
widths in a systematic way (see Supplementary Figure 2).

Discussion

We have characterized our five stimulus classes based on
two factors: evolutionary significance and amount of
experience. We find that recognition of object classes with
minimal evolutionary significance, i.e., letters, mirror-
image letters, and novel shapes, show a clear scale-dependent

Figure 5. Results. Group data showing critical frequencies used for recognition are plotted as a function of stimulus size, for the human
observers for the five stimulus categories (A–E) as well as for the CSF-ideal observer for the face stimuli (F). For the letters and mirror-
imaged letters (A–B), results from Majaj et al. (2002) are superimposed for comparison (gray curve).
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pattern of processing across the range of sizes tested. The
data for letters, the high-experience set, replicates the
results of previous studies (Majaj et al., 2002; Oruc &
Landy, 2009) closely. The results for mirror-image letters
and novel shapes, the intermediate-experience and low-
experience sets, respectively, also follow the pattern found
with letters, suggesting that, for stimuli with minimal
ecological significance, experience in the course of one’s
lifetime has little impact on the degree of scale dependence.
Upright faces were the only stimulus category we tested

that showed signs of scale invariance in our study, but this
was limited to relatively larger face sizes. Our group data
showed that, when faces were 4.7 degrees of visual angle
in width or less, they showed scale dependency in their
processing, just like other objects. Based on a median face
width of 12.8–14 cm (Poston, 2000), 4.7 degrees corre-
sponds to viewing a real face from approximately 1.6 m
away, which falls in the middle of the range what Hall
(1966) termed close-phase social distance (4–7 feet, i.e.,
between 1.2 and 2.1 m), characterizing the distance people
use when working together or in a casual social gathering.
Thus, when faces are viewed at sizes typically encoun-
tered during social interactions, they show signs of scale
invariance and are processed in a qualitatively different
manner than when they are smaller and hence more
distant.
The inverted face data (Figure 5E) are virtually

identical to the upright face data (Figure 5D) with one
crucial difference: there is no evidence for the flattening of
the critical frequency curve with increasing size from 4.7
to 9.5 degrees of visual angle in width. These results are
consistent with those of Gaspar, Sekuler, and Bennet
(2008) who found that critical frequencies for recognizing

upright and inverted faces did not differ for faces with
widths of 2.3 degrees. Our data show the same pattern at
that size. In fact, considering that both upright and
inverted versions of a particular face stimulus have the
identical spatial frequency power spectrum, i.e., identical
information content, it should not be surprising that the
frequencies critical for recognition would be the same in
each case. The unexpected aspect of the data is the
divergence of the results at the larger face size. The fact
that the scale invariance at these sizes is seen only for
upright faces suggests that experience has an impact on
scale dependency but only for highly ecologically signifi-
cant stimuli.
One possible explanation for the bend observed for the

upright face stimuli is that the critical frequency curve
cannot continue moving up to higher frequencies with
larger sizes because these are too high to be visible or that
visibility is sufficiently impaired that it impacts the
usefulness of the diagnostic information. This is unlikely
given the fact that this deflection does not occur for
inverted faces: information at these higher spatial fre-
quencies must be visible and useful for recognition.
Nevertheless, to conclusively exclude reduced contrast
sensitivity and lack of diagnostic information at the higher
spatial frequencies as a potential explanation of the
characteristic bend, we ran an ideal observer simulation
and compared human data to that of the model. The ideal
observer is a computer model that goes through the same
experimental tasks as the human observers and is able to
use all information available in an optimal fashion. As
such, it serves as a benchmark of the best possible
performance. Under normal circumstances, the ideal
observer’s behavior is scale invariant by definition. In

Figure 6. Upright face data. (A) Data for all seven subjects who participated in the upright faces experiment are shown. The characteristic
bend, or deflection, apparent in the group data (Figure 5D) for larger faces is also evident at the individual subject level. (B) Data for one
subject who completed the upright faces experiment at nine face sizes are shown. This set of data is well fit by a cumulative Gaussian,
suggesting that recognition of upright faces is characterized by two distinct regimes: a scale-dependent regime for small sizes and a
scale-invariant regime for larger sizes.
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this particular case, though, we furnished the model with
the contrast sensitivity profiles of our human observers
such that the model was also hampered by the same
resolution and sensitivity constraints as the human
observers.
To accomplish this, we first measured contrast sensi-

tivity functions of four individual observers who partici-
pated at all size conditions of the upright faces
experiment. We then computed for each individual
observer the equivalent input noise, i.e., the noise
spectrum at which an ideal observer would have the same
contrast sensitivity profile as the human observer. Our
CSF-ideal observer then went through the same exper-
imental trials as the humans in which the stimuli were
corrupted by one of the 16 noise masks of the given
condition as well as the equivalent input noise of the
individual observer. Thus, we produced CSF-ideal model
predictions for each observer separately.
At each trial, the CSF-ideal observer was shown a noisy

stimulus and asked to chose which one of the five faces
the stimulus corresponded to. The CSF ideal had knowl-
edge of the five face templates, the contrast at the current
trial, and the statistics of the two noise masks. The
response of the CSF ideal was based on maximum
likelihood given the noisy stimulus. Further details of
the CSF-ideal observer as well as the human contrast
threshold measurements can be found in Oruc and Landy
(2009, Appendices A and B).
The results of this simulation are shown in Figure 5F.

We find that similar to the human data on inverted faces,
the CSF ideal uses the higher portion of the face spatial
frequency spectrum at larger sizes, with no sign of a bend.
If these higher frequencies were not available to the
human observers due to contrast sensitivity constraints,
then they would also not be available to the CSF-ideal
observer. This result confirms that the characteristic
deflection pattern seen in the human upright face data is
not due to visibility of the image contents but likely
represents a shift in strategy for how information is used
by the human observers to accomplish recognition at
different sizes.
Work by Sinha and colleagues demonstrate the remark-

able ability of human observers to recognize faces in very
low-resolution images (Sinha, 2002a, 2002b; Sinha, Balas,
Ostrovsky, & Russell, 2006; Yip & Sinha, 2002). This
result is consistent with our current findings: when faces
are viewed at the smallest size, the critical frequencies
used to recognize faces correspond to approximately
2.3 cpd. In other words, at our smallest size, face images
would be highly recognizable at a 4 � 5 pixel image
resolution, very similar to the results of Sinha et al. Our
present findings also extend a prediction: we argue that
such drastically low-resolution face images should
become less recognizable and require higher image
resolution when viewed at larger sizes, e.g., at 5 degrees
face width or larger.

A scale-dependent relationship between critical spatial
frequencies and stimulus size is consistently found for
various object categories including letters (Chung et al.,
2002; Majaj et al., 2002; Oruc & Landy, 2009), words
(Chung & Tjan, 2009), mirror-imaged letters, novel
shapes, inverted faces, and small upright faces. We show
that, so far, the only exception occurs for upright faces
viewed at distances typical of social interactions. Our
interpretation of this result is based on the special
evolutionary status of faces as a stimulus class, though
there are other ways in which our stimulus sets differ. For
one, although our images are all two-dimensional, faces are
complex three-dimensional shapes containing a gradation
of gray-scale tones whereas the letters and other similar
stimuli are simple two-tone images of two-dimensional
objects, consisting of strokes on a uniform background. In
addition, while letters differ by the varying spatial
configuration of strokes, all faces share the same config-
uration and are differentiated by subtle differences in that
common template. However, these image- and object-
based differences do not explain the difference we observe
between upright and inverted faces or between small and
large upright faces. A second difference between faces
and letters lies in the neuroanatomy of their processing:
while functional imaging and lesion studies show activity
in both hemispheres related to both words/letters and
faces, the activity in the right hemisphere dominates for
faces whereas that in the left hemisphere dominates for
letters (Cohen et al., 2002; Kanwisher, McDermott, &
Chun, 1997). At this point, it remains possible that this
neuroanatomic difference is as relevant as the ecological
difference between letters and faces to the divergent
results for these stimuli.
At ecologically relevant sizes, the spatial frequencies

used for recognition are lower than what would be expected
based on the extrapolation of the scale-dependent compo-
nent of the upright face data at smaller sizes (Figure 5D)
and also based on a comparison to the inverted face
data (Figure 5E) and the CSF-ideal observer results
(Figure 5F). What does this switch in the usage of spatial
frequency signify? Given the fact that this deflection
occurs for upright faces but not inverted, it is conceivable
that it represents a switch to a recognition strategy based
on holistic, or configural, processes (Maurer, Grand, &
Mondloch, 2002; Sergent, 1984; Tanaka & Farah, 1993).
It has been argued before that holistic processes may
depend on lower spatial frequencies (Goffaux & Rossion,
2006), as opposed to generic objects or inverted faces,
which are recognized via part-based processes that may
rely on higher spatial frequencies.1 Our present findings,
which show that at ecologically relevant sizes faces are
recognized using spatial frequencies that are relatively
lower than expected (Figures 5D–5F), may indicate that at
these sizes a holistic strategy is favored whereas at smaller
sizes a part-based strategy is used. This, however, must be
considered merely a speculation at present. Nevertheless,
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these findings may support arguments that faces are
special and that their recognition may involve specialized
expert strategies, but perhaps mainly at ecologically
relevant sizes.

Conclusions

A large literature exists now that examines the critical
spatial frequencies used for recognition of various visual
stimuli such as letters and faces. Most of these studies
measured critical spatial frequencies at a single stimulus
size (e.g., Costen, Parker, & Craw, 1996; Gaspar et al.,
2008; Gold, Bennett, & Sekuler, 1999; Näsänen, 1999;
Peli, Lee, Trempe, & Buzney, 1994; Scharff, Hill, &
Ahumada, 2000). Whenever critical frequencies were
measured as a function of size (Chung et al., 2002; Chung
& Tjan, 2009; Majaj et al., 2002; Oruc & Landy, 2009), a
scale-dependent pattern of results was observed, despite a
prevalent intuition that object recognition should be
minimally influenced by object size. Scale dependence
holds true for a large variety of stimulus classes tested
(Chung et al., 2002; Chung & Tjan, 2009; Majaj et al.,
2002; Oruc & Landy, 2009), with our results showing one
important exception: upright faces viewed at sizes with
ecological and social significance.
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Footnote

1Our results also provide a means to reconcile these
data and those that claim no difference between the spatial
frequencies used to recognize upright and inverted faces
(Gaspar et al., 2008; Goffaux & Rossion, 2006). Gaspar
et al. (2008) measured critical frequencies at the size of
2.3 degrees per face width, at which we find a similar

result, whereas Goffaux and Rossion (2006) used larger
faces (4.1 degrees), which may explain the difference they
observed.
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