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Abstract

The segregation of texture patterns may be carried out by a set of linear spatial filters (to enhance one of the constituent textures),

a nonlinearity (to convert the higher contrast of response to that constituent to a higher mean response), and finally subsequent

(‘‘second-order’’) linear spatial filters (to provide a strong response to the texture-defined edge itself). In this paper, the properties of

such second-order filters are characterized. Observers were required to detect or discriminate textures that were modulated between

predominantly horizontally oriented and predominantly vertically oriented noise patterns. Spatial summation for these patterns

reached asymptote for a stimulus size of 15� 15 deg. Modulation contrast sensitivity was nearly flat over a five-octave range of

spatial frequency, but was bandpass when stated as efficiency (relative to an idealized observer confronted with the same task).

Increment threshold showed the improved performance with a sub-threshold pedestal seen in the ‘‘dipper effect’’, but the typical

Weber’s law behavior at higher pedestal contrasts was not observed at the highest pedestal modulation contrasts achievable with our

stimuli. Sub-threshold summation experiments indicate that second-order filters have a moderate bandwidth.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dominant view of spatial pattern detection and
discrimination is that the visual system consists of a set
of channels selective for a range of spatial frequency,
temporal frequency, orientation, direction, color and so
on. These selectivities are defined primarily by the linear
filtering properties of the channel, but there is evidence
for nonlinear channel processing as well. More recently,
there has been interest in linear filtering that takes place
following a nonlinear stage, which is known as ‘‘second-
order’’ processing. In this paper, the spatial filtering
properties of these second-order filters are investigated
using techniques analogous to those originally used to
define first-order spatial frequency channels. We begin
by summarizing the kinds of studies used to investigate
first-order channel properties as well as studies that have
investigated the characteristics of second-order pro-
cessing in vision.

1.1. First-order spatial frequency channels

Spatial frequency channels have been studied exten-
sively in the last 30 or so years (De Valois & De Valois,
1990; Graham, 1989). Contrast sensitivity is bandpass in
spatial frequency (for low temporal frequencies), but
this contrast sensitivity function (CSF) is viewed as the
envelope of a number of narrow-band, spatial-frequen-
cy-tuned mechanisms (Campbell & Robson, 1968).

The spatial frequency tuning of these underlying
mechanisms or channels has been examined using several
methods.

• Adaptation: When the observer is adapted to a partic-
ular spatial frequency grating, sensitivity is reduced
for gratings that are close in spatial frequency, but
not for those that are far removed in spatial fre-
quency (Blakemore & Campbell, 1969; Pantle & Sek-
uler, 1968), indicating that a narrowband mechanism
(or mechanisms) was desensitized by the adapter. In
addition, the apparent size of gratings that are nearby
in spatial frequency is altered (Blakemore & Sutton,
1969), suggesting that the response profile across nar-
rowband channels has been altered by adaptation.
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• Summation: When threshold contrast is determined
for compound stimuli (sums of two or more gratings),
a greater degree of summation is found for gratings
similar in spatial frequency than for those with more
distant spatial frequencies (Sachs, Nachmias, & Rob-
son, 1971). This has been taken to indicate that sim-
ilar gratings are summed within the same channel
(that is, linearly combined by receptive fields sensitive
to both summands), whereas dissimilar gratings only
combine by probability summation across distinct an-
alyzers (Campbell & Robson, 1968; Graham, 1980;
Graham & Nachmias, 1971).

• Masking: Channel tuning has also been estimated
using masking experiments, where it has been found
that a narrowband masker will increase threshold
for gratings similar in spatial frequency to the mas-
ker, but not for those with a spatial frequency far re-
moved from that of the masker. This has been carried
out with narrowband noise maskers (Henning, Hertz,
& Hinton, 1977; Stromeyer III & Julesz, 1972) as well
as gratings and other patterned maskers (Legge &
Foley, 1980; Wilson, McFarlane, & Phillips, 1983).

Additional methods for estimating channel tuning
(reviewed by Graham (1989)) include the manipulation
of stimulus uncertainty and requiring subjects to detect
as well as to identify the stimulus presented on each
trial. The methods we have reviewed have not always
provided the same estimates of channel bandwidth. Such
inconsistencies may indicate a failure to note the degree
to which probability summation across channels and
across space contributes to the results (Graham, 1980).

When the observer’s task is to discriminate two pat-
terns differing in contrast, the increment threshold (the
increment in contrast added to a pedestal to achieve
threshold) at first decreases with increasing pedestal
contrast, then begins to increase (the so-called ‘‘dipper
function’’, Legge & Foley, 1980; Nachmias & Sansbury,
1974). Note that at higher contrasts the dipper function
approximates a power function, but not one with a
power equal to one (that is, Weber’s law is typically
not observed, Legge, 1981). There are two typical ex-
planations for the shape of the dipper function. The first
attributes the dipper function’s shape to a static non-
linearity that follows the initial linear, spatial filter
(Foley & Legge, 1981; Legge & Foley, 1980; Nachmias
& Sansbury, 1974; Wilson, 1980). The initial fall in in-
crement threshold is attributed to an accelerating con-
trast nonlinearity near threshold, and the later rise to a
decelerating (or saturating) nonlinearity. An alternative
explanation is that the shape of the contrast increment
threshold function results from observer uncertainty
(Pelli, 1985). Uncertainty about the signal causes the
observer to monitor both relevant channels (those that
are sensitive to the test pattern) and irrelevant channels
(those that are completely insensitive to the test pattern).

At low contrasts, the irrelevant channels contribute
noise that limits detection; at higher contrasts, the
contribution of these irrelevant channels is increasingly
dwarfed by the larger responses from the relevant
channels.

1.2. Second-order processes in vision

In analyzing results from ‘‘pre-attentive’’ texture
segregation experiments, many have tried to explain
observer performance based on the pattern of outputs of
spatial frequency channels to the textures to be dis-
criminated (Landy & Graham, in press). A typical
model begins with a set of linear, spatial filters, followed
by a nonlinearity (so that regions with large response
variability are mapped to large average response), fol-
lowed by a second-order, linear, spatial filter (to enhance
boundaries between regions with different average re-
sponse strength). This linear–nonlinear–linear (LNL)
model is referred to by Chubb and colleagues (Chubb,
Econopouly, & Landy, 1994; Chubb & Landy, 1991) as
the ‘‘back-pocket model’’ of texture segregation (Fig. 1),
as it has become the default model that researchers in
the field routinely ‘‘pull from their back pocket’’ to at-
tempt to make sense of new texture segregation results.
And, a large number of recent papers on texture segre-
gation utilize this basic model structure (Bergen &
Adelson, 1988; Bergen & Landy, 1991; Bovik, Clark, &
Geisler, 1990; Caelli, 1985; Clark & Bovik, 1989; Fogel
& Sagi, 1989; Graham, 1991, 1994; Knutsson &
Granlund, 1983; Landy & Bergen, 1991; Malik & Pe-
rona, 1990; Sagi, 1990; Sutter, Beck, & Graham, 1989;
Turner, 1986). In this paper, we will consider only the

Fig. 1. The back-pocket model of texture segregation. The input image

is passed through a set of linear spatial filters. A nonlinearity is applied

to the filter outputs (here sketched as a pointwise nonlinearity, al-

though it may also involve gain control, normalizing by the pooled

outputs of several channels). A second-order, linear spatial filter is then

used, for example to enhance the difference in responses to neighboring

texture regions. Finally, the channel outputs are combined for per-

formance predictions for particular experiments.
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simplest form of LNL mechanism, one for which the
second-order linear filter pools over rectified responses
of first-order linear filters that are all identical in form to
one another except for spatial position.

A linear spatial filter with both excitatory and in-
hibitory receptive field regions (i.e., a bandpass filter)
can enhance luminance structure such as lines or edges
in a stimulus. Analogously, the basic LNL structure
allows back-pocket models to extract more general
changes in structure in a stimulus such as edges across
which there is a change of image contrast, average
spatial scale or orientation content. This same LNL or
second-order structure has seen wide application in the
modeling of visual processes (see, e.g., Chubb, Olzak, &
Derrington, 2001), including spatial vision (Olzak &
Thomas, 1999), motion (Chubb & Sperling, 1988; Wil-
son, Ferrera, & Yo, 1992) and stereopsis (Hess & Wil-
cox, 1994) for similar purposes.

1.3. Back-pocket model channel properties

Having demonstrated that second-order processing is
an important contributor to some forms of spatial dis-
criminations, the next step is to delineate the properties
of each stage (linear, nonlinear, and second-order linear)
of a channel of the back-pocket model. Is the nonlin-
earity static? Dynamic? A gain control mechanism? If
static, what is its functional form? If gain control, what
serves as the gain normalization term? Are there multi-
ple, second-order, linear mechanisms? What is the form
of the second-order receptive field (shape, size, spatial
frequency and orientation bandwidth)? Is the form of
the second-order linear filter related in any particular
way to that of the first-order linear filter that provides its
input? The current paper concentrates on questions of
the form and number of second-order, linear spatial
filters. We next review a number of studies that have
attempted to address each of these questions.

Early nonlinearity: Graham and colleagues (Graham,
1991; Graham, Beck, & Sutter, 1992; Graham & Sutter,
1998) have explored and rejected an early nonlinearity
preceding the first stage of linear, spatial filtering as
inconsistent with their texture-based region segregation
experiments.

First stage linear, spatial filter: Graham and colleagues
(Graham, 1994; Graham, Sutter, & Venkatesan, 1993)
find that the first stage filter is both orientation- and
spatial frequency-tuned, although the bandwidths ap-
pear to be wider than those used for computing first-
order texture-based region segregations. Dakin and
Mareschal (2000) also found the first stage filters to be
orientation- and spatial frequency-tuned for a task of
detecting a contrast modulation of a filtered noise carrier.

Static nonlinearity: Nearly all studies invoke some
form of static nonlinearity following the first stage linear
filter, whether or not they also include some form of

gain control. Chubb and colleagues (Chubb et al., 1994;
Chubb & Landy, 1991) were able to isolate a single,
small-scale texture channel and, by varying the first-or-
der luminance statistics of two textures to be discrimi-
nated, were able to measure the static nonlinearity of
that channel. Graham and Sutter (Graham, 1994; Gra-
ham & Sutter, 1998, 2000) found that it must be an
accelerating/expansive nonlinearity for their region seg-
regation task.

Gain control: A number of studies indicate the exis-
tence of a gain control mechanism such that the output
of a first stage linear filter followed by its static non-
linearity is then normalized by a pooled response from
other filters (Graham, 1991; Graham et al., 1992; Gra-
ham & Sutter, 1996, 1998, 2000; Olzak & Thomas, 1996,
1999; Olzak & Wickens, 1997). Graham and Sutter
(2000) suggest that this gain control is inhibition be-
tween channels rather than normalization of responses
over space within a channel. Olzak and Thomas (1996,
1999) have studied a variety of spatial pattern discrim-
inations, resulting in a model that includes two forms of
stereotyped normalization and pooling, either across
spatial frequency (for finer orientation judgments) or
across orientation (for improved spatial frequency dis-
crimination).

Second-order modulation contrast sensitivity: Jamar
and Koenderink (1985) measured the sensitivity to
contrast modulations of white and bandpass noise
gratings (that is, one-dimensional patterns) and found
this form of second-order modulation contrast sensi-
tivity to be modestly lowpass in form. Sutter, Sperling,
and Chubb (1995) measured the second-order modula-
tion CSFs for the detection of contrast modulations of
isotropic, bandpass-filtered carrier noise patterns. They
found a modulation CSF that was nearly flat, although
it showed a modest bandpass shape (for a similar result,
see also Schofield & Georgeson, 1999). Kingdom, Kee-
ble, and Moulden (1995) measured a modulation CSF
for the detection of a sinusoidal modulation of orien-
tation across a texture. Their modulation CSF was also
quite flat over a large range, although with more of a
tendency to be lowpass.

Second-order channel bandwidth: Several studies have
examined whether the second-order modulation CSF is
an envelope over multiple, underlying, second-order
mechanisms, as in the first-order case. Kwan and Regan
(1998) used orientation-modulated texture and an ad-
aptation paradigm. Adaptation to second-order texture
modulation increased thresholds, and the effect was
orientation-tuned, indicating that second-order chan-
nels were orientation-tuned. Arsenault, Wilkinson, and
Kingdom (1999) used a second-order masking paradigm
with spatial frequency-modulated noise textures. They
found the masking effect to be spatial frequency- and
orientation-tuned. But, unlike other studies cited here,
they found no evidence of orientation tuning for the

M.S. Landy, _II . Oruc� / Vision Research 42 (2002) 2311–2329 2313



carrier. However, this lack of orientation tuning for the
carrier is also consistent with a model with multiple
mechanisms, each of which has an orientation-tuned
first-order linear filter, but which as a group span the
range of possible orientations (rather than a single
mechanism with an initial linear filter that is not orien-
tation-tuned). Kingdom and Keeble (1996) compared
orientation modulation detection for sine wave, square
wave, and missing fundamental modulators. In contrast
to the other studies, their results were consistent with the
use of only a single, second-order channel. Finally, the
region segregation tasks used by Graham and Sutter
(1998, 2000) require that the second-order filter be ori-
entation-tuned.

Note that for the type of second-order mechanisms
considered here (that use a single form of first-order
linear filter in all locations), a frequency or orientation
modulation of a carrier texture is equivalent to a con-
trast modulation. This is also true of the stimuli used in
the current study. The authors of the above-cited studies
may have had more complex mechanisms in mind, with
first-order receptive fields that varied in frequency or
orientation at different locations (e.g., matched filters for
their stimuli). Such more complex mechanisms are
probably unnecessary to explain their results.

Relationship between first and second stage filters:
Many studies have found that texture discrimination is
scale invariant (Dakin & Mareschal, 2000; Kingdom
et al., 1995; Sutter et al., 1995). That is, if viewing dis-
tance is altered, the results do not change. Kingdom and
Keeble (1999) argue that these results imply a link be-
tween the scale of the first- and second-order filters.
Graham (1994) suggests the ratio of scales is about 3–4,
whereas Sagi (1990) suggests a far larger ratio of 6–18,
and Kingdom et al. (1995) suggest a ratio of 40–50 using
orientation-modulated textures. Several studies suggest
the preferred orientations of the first and second stage
filters are correlated. Most studies indicate the preferred
orientations of the first and second stage filters tend to
be aligned, although perpendicular orientations may be
favored as well (Dakin & Mareschal, 2000; Dakin,
Williams, & Hess, 1999; Graham & Wolfson, 2001;
Wolfson & Landy, 1995).

Finally, a number of recent studies involve tasks that
require observers to analyze the local orientation
structure of a texture per se, rather than using orienta-
tion to examine texture segregation (Dakin et al., 1999;
Kingdom & Keeble, 2000; Keeble, Kingdom, & Mor-
gan, 1997). Some of these studies claim their results are
incompatible with the LNL framework (Dakin et al.,
1999; Kingdom & Keeble, 2000).

1.4. Motivation and preview

In this paper, we describe experiments intended to
elucidate the properties of the second-order, linear,

spatial filters underlying texture segregation and texture
modulation detection. Our study differs from those that
precede it in a number of ways. First, we use a different
type of stimulus. Second, we have used a number of new
experimental manipulations. Third, we have compared
our results to simulations of idealized back-pocket
models using the same stimuli.

To investigate the form and number of first-order
filters, the experiments summarized earlier used sine
wave gratings and other simple patterns as the stimuli
for detection and discrimination experiments. Several
investigators, including ourselves, have had the idea to
investigate the second-order filters by constructing a
stimulus that, after processing by the first-order filters
and subsequent nonlinearity, delivers a sine wave grat-
ing (or other simple pattern) as the input to the second-
order linear spatial filters. If this were possible, then one
could study these filters using the same techniques
summarized in Section 1.1. To accomplish this, several
researchers have used the intended pattern as a ‘‘mod-
ulator’’, and have assumed that the first two stages of
processing successfully demodulate the stimulus. For
example, Sutter et al. (1995) use Gabor patches as
modulators of a bandpass, isotropic noise carrier. This is
modulation in the traditional engineering sense: the
modulator waveform is multiplied by the carrier wave-
form to produce the stimulus (this multiplication is
performed in the contrast domain). Kingdom et al.
(1995) use a different form of modulation entirely. Their
modulation patterns (typically sine wave gratings) are
used to modulate the average orientation of a texture
consisting of line segments or small Gabor patches.

We are specifically interested in the sort of second-
order mechanisms that are required for the analysis of
purely texture-defined patterns as in, e.g., studies of
texture segregation. As such, it was also our purpose to
choose stimuli that would be relatively easy to analyze
theoretically but that, at the same time, could not be
detected using mechanisms designed purely for the
analysis of local contrast. Local contrast can be esti-
mated using second-order mechanisms with isotropic
first-stage linear filtering. On the other hand, many
stimuli used to study texture segregation involve no
change in local contrast across a texture-defined
boundary, and oriented, first-order linear filters are re-
quired to detect such edges. There is a large literature on
the detection of contrast modulations (some of which is
reviewed above), and Dakin and Mareschal (2000)
suggested that it would be simpler if identical mecha-
nisms were used for such tasks as well as for texture
tasks. Their evidence of orientation tuning for the car-
rier in contrast modulation detection is consistent with
this idea. However, to ensure that our tasks probed the
types of mechanisms used for texture segregation, we
eschewed the use of contrast modulation in favor of a
purely textural modulation.
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Our choice of stimuli was inspired by the work of
Watson and Eckert (1994) concerning second-order
mechanisms of motion analysis. In their study, a verti-
cal, sinusoidal modulator was used to mix two different
isotropically filtered, bandpass noise textures: one
moving upward, and a second moving downward. At
the peaks of the modulator, the stimulus would have a
majority of upward-moving energy, and at the valleys,
the primary component was downward. At the zero
crossings, the stimulus was simply the average of the two
components, with equal upward and downward motion
energy. Modulation contrast sensitivity was found to be
bandpass and scale invariant, and a second-order filter
was estimated. We have developed an analogous stim-
ulus for the modulation of static texture (Fig. 2). The
modulator pattern is used to modulate between a ver-

tically and a horizontally oriented noise pattern. Later,
we argue that this stimulus is substantially easier to
relate to current models than some others that have
been used.

We used these second-order texture-modulated stim-
uli in a series of experiments analogous to several classic
experiments used to understand first-order, spatial fre-
quency channels. These include estimates of spatial
pooling, modulation contrast sensitivity and channel
bandwidth, as well as a measurement of the increment
threshold curve. In addition, we compared the perfor-
mance of the human observers with that of an idealized
observer (essentially, a simulation of a back-pocket
model performing the same task with the same stimuli),
which required us to revise our conclusions concerning
second-order modulation contrast sensitivity.

Fig. 2. Example stimuli. (A) Stimuli were constructed from vertically and horizontally oriented filtered noise textures (the ‘‘carrier’’), combined as

directed by a lower frequency modulator. (B) Stimulus based on a zero-amplitude modulator. The texture is a uniform plaid throughout. (C)

Stimulus based on a 100% contrast sine wave modulator. (D) Stimulus based on a 100% contrast modulator that is the sum of two sine waves. The

modulator is shown above the stimuli in (C) and (D).
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2. Methods

2.1. Stimuli

Stimuli were constructed from two filtered noise
textures, one horizontally and one vertically oriented.
These textures constituted the carrier waveform. A
lower frequency modulator waveform was used, effec-
tively, to vary between the two noise carriers (Fig. 2A).

The carrier textures were generated from white noise
by applying a linear filter in the Fourier transform do-
main, followed by the inverse Fourier transform. The
stimuli were viewed from several viewing distances,
which shifts the range of spatial frequencies. For the
moment, we will describe the stimuli as viewed from the
nearest viewing distance, which was used in most of
the experiments. In spatial terms, the linear filter was a
Gabor function in cosine phase, resulting in a pair of
real, Gaussian distributions in the Fourier domain,
centered on �4 cpd. The Gaussians were separable
functions of fx (horizontal spatial frequency) and fy
(vertical spatial frequency), with standard deviations
adjusted so that the resulting noise had a full bandwidth
at half-height of one octave and 30�. Each stimulus was
constructed using a vertically oriented noise image NV

and a horizontally oriented noise image NH.
Each stimulus was computed by combining NV and

NH with a modulator function (Fig. 2A). All modulators
MðxÞ were vertically oriented sine wave gratings or sums
of gratings. Following Watson and Eckert (1994), we
treated the noise images as contrast images (i.e., mean
luminance equals a value of zero), and a stimulus L was
defined as

m1ðxÞ ¼ 1
2
ð1

�
þ cMðxÞÞ

�1=2

m2ðxÞ ¼ 1
2
ð1

�
� cMðxÞÞ

�1=2 ¼ ð1� m2
1ðxÞÞ

1=2 ð1Þ

Lðx; yÞ ¼ L0 1½ þ Aðm1ðxÞNVðx; yÞ þ m2ðxÞNHðx; yÞÞ
;
where c was the modulation contrast (a number between
0 and 1 that was varied across trials to determine
modulation detection thresholds), A was a fixed ampli-
tude set so that stimulus peak contrast used the full
range of available luminance values (a very small num-
ber of pixel values were clipped at 0 or 255), and L0 was
the mean luminance of the display. The modulating
functions mi ranged from zero to one. Example stimuli
are shown in Fig. 2B–D. As you can see in Fig. 2C, at
the peaks of the modulator MðxÞ, the stimulus consisted
primarily of vertically oriented noise, and at the valleys,
the stimulus was mostly horizontal.

As stated above, we sought stimulus modulations
that would be invisible to mechanisms that merely code
local contrast and its variation across the stimulus. The
definition of ‘‘contrast’’ appropriate for such stimuli is a
matter of some contention, but the most widely em-

ployed such measure for noise stimuli is contrast energy.
The square root in Eq. (1) ensured that expected con-
trast energy did not vary across the stimulus as the
weighted sum of the two independent, random noise
images was computed. However, at high modulation
contrasts the square root does result in distortion of the
modulator.

Contrast modulation can result in low-frequency
distortion products visible to first-order mechanisms. To
minimize such distortion, the modulator frequency was
never higher than one-half of the carrier noise peak
spatial frequency. However, as stated above, the square
root operation in Eq. (1) results in higher frequency
distortion products of the modulator, which can result
in additional first-order stimulus artifacts. We examined
this possibility by comparing phase-randomized ver-
sions of our modulated stimuli (e.g. a phase randomized
version of Fig. 2C) with our unmodulated stimuli (Fig.
2B). Visible difference between them can only be at-
tributed to first-order artifacts, as the phase random-
ization destroys the texture modulation structure. For a
carrier spatial frequency of 4 cpd and a modulator
spatial frequency of 2 cpd, these artifacts were visible for
modulation contrasts as low as 0.3–0.4. For a 1 cpd
modulator, these artifacts were barely, if at all visible at
modulation contrasts of 0.8–1.0, and were never visible
for a 0.5 cpd modulator. The visible artifacts corre-
sponded to stimuli whose power spectra were, in fact,
discriminable from those of our unmodulated stimuli. In
general, these artifacts are visible at modulation contrast
levels that are too high to account for our results, much
as was found by Dakin and Mareschal (2000), who ran a
control experiment using phase-randomized stimuli to
check for such artifacts.

Stimuli were computed using the HIPS image pro-
cessing software (Landy, Cohen, & Sperling, 1984). For
each condition, 20 stimuli were computed for a modu-
lation contrast c ¼ 0, and 10 stimuli were computed for
each of 12 nonzero modulation contrast levels in equal
logarithmic steps from 0.08 to 1.0. Modulator spatial
phase was chosen randomly for each stimulus.

Stimuli were displayed using a computer equipped
with a CRS VSG 2/3 frame buffer. For most experi-
ments, stimuli were 500� 500 pixels. The experiments
were carried out over several years, using three different
monitors. In almost all cases, viewing distance was ad-
justed so that those 500� 500 pixels subtended 15� 15
deg. The setups are summarized in Table 1. All displays
ran at or above 60 Hz, and used linearized lookup ta-
bles. For the spatial pooling experiments, other stimulus
sizes were used. For the modulation contrast sensitivity
experiments used to examine scale invariance (the first
monitor setup), experiments were also carried out at
distances of 78 and 157 cm so as to increase the stimulus
spatial frequencies by factors of 2 and 4, and similarly
reduce the retinal image size. Mean luminance was
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comparable in all setups; it was 25 cd/m2 for the Mits-
ubishi and 35 cd/m2 for the Dell monitor.

2.2. Procedure

The subject’s task was either to detect the modulation
or to discriminate its modulation contrast using a 2-in-
terval, 2-alternative forced choice procedure. Trials were
blocked by condition, so that a single modulator MðxÞ
was used in a given block. Each trial consisted of a 500
ms cue, 250 ms stimulus interval, 500 ms blank interval
and 250 ms stimulus interval. In one interval, chosen
randomly on each trial, the modulation contrast was a
fixed value c0 and in the other, the modulation contrast
c ¼ c0 þ Dc was variable. The screen remained blank (at
mean luminance) until subjects indicated by a keypress
the interval perceived to have higher modulation con-
trast, which began the subsequent trial. Auditory feed-
back was provided after each trial. The task in most
experiments was modulation detection. That is, c0 ¼ 0,
so that the fixed, lower modulation contrast stimulus
was, in fact, unmodulated ‘‘plaid noise’’ (Fig. 2B). For
the increment threshold experiments c0 took on nonzero
values.

Blocks of trials consisted of either 100 or 200 trials in
a given condition. That is, in a given block c0, the spatial
frequency, stimulus size, and other variables were fixed,
and only Dc was varied. The modulation contrast in-
crement Dc was controlled by two interleaved staircases
each running for 50 or 100 trials: a 1-up-2-down stair-
case (converging to a probability correct of 0.71) and
a 1-up-3-down staircase (converging to a probability
correct of 0.79). In any given experiment, a set of blocks,
one per condition, was run in random order, and at least
two such sets of blocks of trials were run.

Reported thresholds were calculated by fitting log-
normal distributions (corrected for chance) to the data
by maximum likelihood. Standard errors were com-
puted by a bootstrap method (Efron & Tibshirani,
1993), as follows. Having estimated the underlying form
of a given psychometric function, we simulated an ob-
server governed by that psychometric function. This
simulated observer performed in exactly the same ex-
perimental design (same number of blocks of each type
of staircase) a large number of times. The resulting
datasets were fit in exactly the same way, and the stan-

dard deviation of the resulting estimates of threshold
was used as our estimate of the standard error.

2.3. Subjects

We report the results of four subjects across all the
experiments. All had normal or corrected-to-normal
vision.

3. Results

In this section the results of the detection and dis-
crimination experiments are described. We begin with a
brief control experiment in spatial summation to deter-
mine the stimulus size used for most of the subsequent
experiments. This is followed by experiments in modu-
lation contrast sensitivity, increment threshold, and
sub-threshold summation. In the following section the
results will be compared to those of a specific compu-
tational model for an idealized (i.e., nearly optimal)
observer.

3.1. Second-order spatial summation

Our first experiment looked at the degree to which
stimulus size affected thresholds. In typical first-order
contrast detection experiments, threshold improves
rapidly with increasing stimulus size for small sizes, re-
flecting summation within a single mechanism. For
larger sizes, however, improvement is more gradual, and
this is generally attributed to probability summation
across mechanisms (Graham, 1980). Fig. 3 shows the
data for two spatial summation experiments. Fig. 3A
shows threshold as a function of the stimulus width for a
fixed height of 7.5 deg. For all subjects, spatial sum-
mation has reached asymptote by a width of 15 deg
pretty much independent of the modulator spatial fre-
quency. Fig. 3B shows threshold as a function of the
stimulus height for a fixed width of 15 deg. Spatial
summation appears to be pretty much complete by a
height of 15 deg. Thus, to be able to use a constant
stimulus size independent of spatial frequency, in all
subsequent experiments a stimulus size of 500� 500
pixels was used, corresponding to a stimulus size of
15� 15 deg at the standard viewing distance.

Table 1

Viewing conditions for each setup

Monitor Resolution Viewing distance(s)

(cm)

Subjects/Tasks

Mitsubishi Diamond Scan HL6605 1312� 997 38, 78 and 157 MSL & KNW; ELA (modulation contrast sensitivity)

Mitsubishi Diamond Scan HL6605 832� 590 62 IO (modulation contrast sensitivity)

Dell Trinitron D1025TM 800� 600 68 ELA (increment threshold)

Nanao Flexscan 9070U 800� 591 68 IO (increment threshold, summation), ELA (summation)
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3.2. Second-order modulation contrast sensitivity

Luminance modulation (i.e., first-order) contrast
sensitivity is bandpass with a moderate drop in sensi-
tivity at low spatial frequencies, and steeper drop at high
spatial frequencies. As we shall see shortly, second-order
modulation contrast sensitivity is quite different. As a
preview, the modulator used to generate Fig. 4 increases
in spatial frequency from left to right, and increases in
modulation contrast from top to bottom. It is a second-
order version of the luminance frequency sweep grating
described by Campbell and Robson (1964) that appears,
e.g., in Ratliff (1965, p. 156). The level at which the
texture stripes may no longer be discerned is approxi-
mately the same across the figure, indicating that sec-
ond-order modulation contrast sensitivity is relatively
independent of spatial frequency.

Measurements of modulation contrast sensitivity
taken at the standard viewing distance are shown for

four subjects in Fig. 5A. As was already clear from the
demonstration in Fig. 4, although there is a clear hint of
a bandpass sensitivity profile, second-order modulation
contrast sensitivity is remarkably flat over a five-octave
range.

It has often been claimed that mid- and high-level
visual processes exhibit scale invariance. That is, visual
performance will not change if the size of the stimulus is
scaled up or down, with all stimulus features scaled in
proportion. For example, Parish and Sperling (1991)
found that letter recognition for letters embedded in
visual noise is unaffected by changes in the viewing
distance to the monitor over a 32:1 range. Similar re-
sults have been found for texture segregation (Landy &
Bergen, 1991) and reading (Legge, Pelli, Rubin, &
Schleske, 1985). The above second-order modulation
contrast sensitivity measurements were repeated using
the same stimuli on the monitor, viewed from two ad-
ditional viewing distances. The increased viewing dis-

Fig. 3. Spatial summation. (A) Modulation contrast threshold as a function of stimulus width. Stimulus height was fixed at 7.5 deg. (B) Modulation

contrast threshold as a function of stimulus height. Stimulus width was fixed at 15 deg. Improvement in performance with increased spatial extent

asymptotes at a size of 15� 15 deg.
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tance reduced the overall stimulus size (in retinal sub-
tense) and increased both the carrier and modulator
spatial frequencies by the same factor. Results from this
experiment are plotted as a function of the modulator
retinal spatial frequency in Fig. 5B. In Fig. 5C the same
results are shown shifted horizontally so that per-
formance with the same stimuli on the monitor is
plotted at the same abscissa position. The abscissa be-
comes ‘‘carrier cycles per modulator cycle’’ (a value
that does not change with viewing distance). Observer
performance is unaffected by changes in viewing dis-
tance over this 4:1 range. The modulation CSFs, when
plotted in scale-invariant terms in Fig. 5C, overlap
marginally better than when plotted in retinal terms
(Fig. 5B).

Our modulation contrast sensitivity results may be
compared directly with several other second-order
modulation contrast sensitivity studies. Sutter et al.
(1995) asked subjects to detect contrast modulations of
bandpass-filtered, isotropic noise patterns. The modu-
lation targets were Gabor patches with a constant
bandwidth in octaves (i.e., a constant number of cycles).
They found modulation sensitivity to be bandpass and
scale invariant (for carrier frequencies ranging from 2 to
16 cpd), with a peak sensitivity at about 16 carrier cycles
per modulator cycle (cf. Fig. 5C), and a drop-off by a
factor of 4 in sensitivity as modulation spatial frequency
increased to 2 carrier cycles per modulator cycle. Their
demonstration of scale invariance was more convincing
then ours, as the modulation CSF curves for different
viewing distances only coincided after the requisite
horizontal shift. They discuss the possibility that the
high-frequency drop in sensitivity was due to the use of
stimuli of constant bandwidth, so that higher-frequency
modulators were smaller and lower energy. But, they
claim that little changed in a control experiment that
used stimuli of constant retinal size. Thus, their results

differ from ours qualitatively, indicating perhaps that
contrast modulations of isotropic texture are detected by
a different mechanism or mechanisms than the modu-
lation of orientation content that we employed.

Dakin and Mareschal (2000) also examined contrast
modulation sensitivity on various noise carriers (both
isotropic and oriented). In most conditions, they held
the modulator spatial frequency constant and varied the
carrier spatial frequency. Only two modulator spatial
frequencies were used in these experiments, varying by a
factor of 2. Thus, their results are not directly compa-
rable to ours or to those of Sutter et al. (1995). In par-
ticular, the carrier spatial frequency was varied over a
very large range over which the first-order sensitivity to
the carrier would be expected to vary a great deal. And,
to directly compare their results to ours would entail an
assumption of scale invariance over this large range.
They found (when plotted in comparable terms to ours)
either a modestly lowpass modulation CSF (for isotro-
pic carrier noise and for carrier noise oriented parallel to
the modulator), or a bandcut modulation CSF for car-
rier noise perpendicular to the modulator. They also
found scale invariance across the two modulator spatial
frequencies they used.

Kingdom et al. (1995) used stimuli consisting of
randomly placed texture elements (either line segments
or Gabor patches) that varied sinusoidally in orientation
across the texture. They measured threshold orientation
modulation as a function of modulator spatial fre-
quency. They also found a bandpass modulation CSF
(although the drop-off from the peak sensitivity was
more modest for most subjects) and evidence of scale
invariance. In later work (Kingdom & Keeble, 1997)
they found that scale-invariance results from a link be-
tween the preferred spatial frequency of second-order
linear spatial filters and the preferred spatial frequency
of the underlying first-order spatial filters.

Fig. 4. Second-order sweep grating. This stimulus is constructed analogously to the other stimuli discussed in this paper. In this case, the modulator

Mðx; yÞ, shown above the stimulus, increases in spatial frequency from left to right and in contrast from top to bottom. Large values of the modulator

result in a local texture dominated by vertically oriented noise, and small values by horizontally oriented noise. Notice that the modulation reaches

detection threshold at about the same modulation contrast level across the frequency range.
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In summary, our study and those we have just re-
viewed have some quantitative differences as to the exact
form of the second-order modulation CSF. They all
found only modest second-order tuning. And, wherever
tested, second-order scale invariance was found to hold.

3.3. Second-order increment threshold

Fig. 6A shows the results of a second-order increment
threshold experiment. In this experiment, observers were
required to identify the interval containing the larger

Fig. 5. Second-order modulation contrast sensitivity. (A) Modulation contrast sensitivity is shown as a function of spatial frequency for four

subjects. Datasets are offset horizontally for clarity. Measured modulation contrast sensitivity is nearly flat across a five-octave range. (B) Modu-

lation contrast sensitivity with varied viewing distance. Stimuli on the monitor were identical; a change in viewing distance varied carrier and

modulator spatial frequency by the same factor. Carrier frequency was 4, 8 or 16 cpd. (C) The same data in B shifted horizontally so that identical

stimuli on the monitor are plotted together. The data demonstrate scale invariance, although the test is extremely weak given the nearly flat

modulation CSF.
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modulation amplitude. Modulation spatial frequency
was fixed at 0.5 cpd. Trials were blocked by pedestal
modulation contrast, and staircases controlled the
modulation contrast increment. Increment threshold
decreases with increasing pedestal modulation contrast
until the pedestal modulation contrast is about double
absolute modulation contrast threshold. For higher
modulation contrast pedestals, increment threshold ap-
pears to begin to increase, at which point we run out of
modulation contrast range.

These results are similar to the ‘‘dipper function’’
found in analogous first-order (luminance contrast
modulation) results. First, there is an improvement in
increment threshold for sub-threshold pedestals. Sec-
ond, the amount of improvement is less than that which
would indicate the existence of a fixed absolute thresh-
old (i.e., ‘‘pedestalþ threshold increment¼ constant’’).
Third, the bottom of the dipper appears to be near ab-
solute modulation contrast threshold. Thus, the initial
portion of the curve is consistent with the typical ex-
planations for the improvement in sensitivity for incre-
ment luminance contrast detection (an accelerating
nonlinearity or a reduction in stimulus uncertainty with
increasing pedestal modulation contrast). We cannot
ascertain whether Weber’s Law holds for above-
threshold stimuli for lack of modulation contrast range.

3.4. Second-order channels: summation experiments

The flat second-order modulation contrast sensitivity
displayed in Fig. 5 is traditionally used as the first step
toward identifying the underlying mechanism used to
perform detection tasks. If the modulation contrast
sensitivities we measured were indeed those of a single
mechanism used regardless of the spatial frequency to be
detected, then the inverse transform would yield the

receptive field profile of the second-order linear filter.
The modulation CSF does not constrain the relative
phase of the components. But, assuming cosine phase,
for example, would yield a receptive field that was small
and monophasic (that is, almost a delta function). This
seems an untenable result.

An alternative explanation is that the flat modulation
CSF is the envelope overlying multiple, second-order
spatial frequency channels, analogous to what has been
found for luminance contrast detection. In the case of
luminance contrast, one popular method for determin-
ing the spatial frequency sensitivity of the mechanisms
responsible for detection is sub-threshold summation
(Graham & Nachmias, 1971). Fig. 7A illustrates the
logic behind a typical summation experiment.

In a summation experiment, thresholds are deter-
mined for two sine wave gratings differing in spatial
frequency. Then, thresholds are determined for stimuli
consisting of sums of these two gratings. In any given
threshold determination, the ratio of the modulation
contrasts of the two summand gratings (i.e., the wave-
form shape) is held fixed, and the overall modulation
contrast is varied to determine threshold for this pat-
tern. In the ‘‘summation square’’ illustrated in Fig. 7A,
summation stimuli are plotted relative to the thresholds
for the individual grating stimuli, and a single summa-
tion threshold determination is carried out using stimuli
lying on a line through the origin (i.e., the zero modu-
lation contrast stimulus).

Consider first the situation where the two summands
differ greatly in spatial frequency, so that no common
mechanism is sensitive to both gratings. Instead,
threshold is determined by two mechanisms, those that
are most sensitive to each of the individual summands.

In the simplest case, the stimulus is only detected when
at least one grating reaches its individual threshold. This

Fig. 6. Increment thresholds. (A) The increment in modulation required for threshold discrimination is plotted as a function of the pedestal

modulation contrast for two subjects and our idealized observer. Discrimination improves with increasing pedestal modulation contrast, and shows

signs of developing a Weber’s Law region at the point where the available modulation contrast range is exhausted. (B) Increment threshold efficiency

of the same two observers. Note that the ordinate is reversed so that the curves are of the same form as in (A). That is, better performance is plotted

lower, as is true for plotted increment thresholds.
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‘‘first to the post’’ behavior results in the threshold de-
tection contour shown as the dashed lines in Fig. 7A.

An alternative is that two independent mechanisms
are used, but each can contribute to detection in a noisy
fashion even with sub-threshold stimulation. This may
be modeled by probability summation wherein the
probability of detection increases with increasing sum-
mand modulation contrast and the compound stimulus
is detected if either summand is detected (e.g., Graham,
1980). Or, it may be modeled by an observer that sums
the noisy output of multiple detectors using a vector
length combination rule (Quick, 1974). Either approach
predicts a threshold detection contour that is a smooth

curve like that shown in Fig. 7A, lying within the first-
to-the-post contour with a shape determined by the
psychometric function shape for the components or by
the particular vector length metric chosen.

If the two summands are relatively close in spatial
frequency, they may both contribute to the response of a
single detector. If they are in a spatial phase relationship
so as to maximally stimulate the same detector, then
linear spatial summation results (the solid negative dia-
gonal in Fig. 7A). The locus of threshold stimuli de-
pends on the relative phases of the summands in a
complicated manner when both stimulate the same de-
tector (see Graham & Nachmias, 1971, for details).

Fig. 7. Summation experiments. (A) Theoretical summation results and the summation coefficient. Summation stimuli are characterized by the

amplitudes of the two sine wave grating summands, here plotted as multiples of their individual modulation contrast thresholds. Threshold ex-

periments are carried out by varying modulation amplitude alone for a fixed waveform (i.e., stimuli having a fixed ratio of summand amplitudes, thus

lying on a line through the origin such as the dotted line shown here). Complete summation within a single detector results in thresholds lying along

the negative diagonal (solid line). Independent hard thresholds (‘‘first to the post’’) are indicated by dashed lines. Data typically lie on a curve

between these extremes. The degree of summation is calculated as the fraction of the area between these extremes lying outside the curve (i.e.

B=ðAþ BÞ). (B) Sample summation data. The summation coefficient is 0.4. (C) Summation data. In each data set, one summand’s spatial frequency is

fixed at 0.5 cpd and the other is varied across blocks of trials. Error bars are derived by bootstrap simulations. For each summation square, new

sample values of the five constituent thresholds are drawn from the estimated sampling distributions of each. These are then plotted in a summation

square (with axes rescaled based on the new, single-summand thresholds) and a summation coefficient is calculated. This process is repeated 5000

times. The error bars in the figure represent the 5th and 95th percentiles of the resulting distribution of summation coefficients. The dashed curve for

subject IO is the summation coefficient calculated for the idealized observer model (described in Section 4.3) for the same conditions. The function is

substantially narrower than that of the human observers.
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We carried out such a second-order summation ex-
periment using modulators that were sums of two sine
wave gratings. An example stimulus is shown in Fig. 2D.
One summand was 0.5 cpd; the other varied in spatial
frequency. The two gratings were in sine phase. The
absolute phase was randomized over a 2 deg range (one
cycle of the 0.5 cpd summand). The spatial frequencies
of the summands were never too close to one another.
Thus, the resulting beat frequency was always suffi-
ciently high to ensure that the observer could see the
high modulation contrast portion of the beat within the
15 deg stimulus window. For each observer, modulation
detection thresholds were determined for each constit-
uent grating alone. Then, for every pair of gratings,
thresholds were determined for summation waveforms
corresponding to angles of 22.5, 45 and 67.5 deg in
the summation square (an example dataset is shown in
Fig. 7B).

By the above logic, a high degree of summation
corresponds to a summation contour near to the nega-
tive diagonal (the solid diagonal line in Fig. 7A) and
poor summation to the dashed square. The detailed
behavior between those extremes depends on the details
of the underlying model of channel behavior and de-
tector combination rule (probability summation versus
signal detection theory, peak detection versus vector
length, etc.). To obviate difficulties of interpretation, we
summarize the results of each summation experiment
with a simple, nonparametric statistic we call the sum-
mation coefficient. It is defined as B=ðAþ BÞ, where A
and B are the areas below and above the summation
contour illustrated in Fig. 7A. A summation coeffi-
cient of zero corresponds to complete independence
(the dashed lines), and a value of one corresponds to
the summation contour (the solid, negative diagonal
line).

Fig. 7C shows the summation coefficient as a function
of the spatial frequency of the variable summand. The
summation coefficient has a value of one at a summand
frequency of 0.5 cpd (the spatial frequency of the fixed
summand) by definition. The summation coefficient
drops substantially for spatial frequencies an octave
above or below the fixed summand. Thus, the flat sec-
ond-order modulation CSF of Fig. 5 may well be the
envelope over multiple, second-order spatial frequency
channels, each with bandwidth of an octave or so, much
as in the first-order, luminance contrast case. This con-
clusion is in agreement with the results of Arsenault
et al. (1999) and Schofield and Georgeson (1999), but
not those of Kingdom and Keeble (1996).

4. Idealized observer modeling

When confronted with an array of results such as
those just presented, it is generally useful to compare

observer performance to that of an ideal observer. For
example, by applying an ideal observer at various stages
along the visual pathway, one can learn what aspects of
stimulus information are lost at each stage of processing
(Geisler, 1989). A clear example is first-order (lumi-
nance) contrast sensitivity, for which poor foveal per-
formance at high spatial frequencies may be attributed
to losses in the optics, whereas performance in the pe-
riphery or at low spatial frequencies is worse than that
of an ideal observer at the level of the cone quantum
catch, so these losses must be attributed to neural pro-
cessing (Banks & Bennett, 1988; Banks, Sekuler, &
Anderson, 1991). Thus, ideal observer analysis can help
one discover whether a pattern of performance data is
the result of the inherent information content of the
stimuli, or whether it indicates something more pro-
found about the nature of visual processing.

The use of modulated stimuli for studying second-
order pathways carries with it an implicit assumption
that the early visual stages successfully demodulate the
stimulus. And, for the results to characterize a second-
order filter, the stimulus should isolate a single second-
order channel. Further, the stimulus noise at the input
of the second-order channel (after demodulation) should
be independent of the modulator used, so that signal
strength of the modulator corresponds in a simple way
to the signal-to-noise ratio at the input of the linear filter
under study.

Previous attempts to measure second-order modula-
tion contrast sensitivity violate one or more of these
assumptions. Sutter et al. (1995) measured the detect-
ability of Gabor patches used to modulate the contrast
of isotropic, bandpass-filtered noise. This is a stimulus
that would be successfully demodulated by any channel
with a first-order linear spatial filter matched in spatial
frequency to that of the carrier noise, regardless of
whether that filter were orientation tuned or not, and
the orientation preference of that filter. Thus, it is
possible that the modulator Gabor would be delivered
to multiple second-order filters, and so one would need
to model the manner in which those signals are com-
bined.

The stimulus used by Kingdom et al. (1995) is even
more complicated to analyze. They used the modulator
to control the local orientation in a texture. Thus, a sine
wave modulator would result in a stimulus, e.g., that
sinusoidally modulated across the pattern from hori-
zontal to diagonal upward (at the peak of the modula-
tor), back to horizontal, and then diagonal downward
(at the trough). Consider a pathway with first-order
filter tuned to the average orientation (i.e., horizontal).
After the succeeding nonlinearity, the response will be
maximal at portions of the pattern that are horizontal,
and less strong as the pattern deviates from horizontal
(in either direction). Thus, the response reaches a max-
imum at the zero-crossings of the modulator pattern

M.S. Landy, _II . Oruc� / Vision Research 42 (2002) 2311–2329 2323



(where the texture is horizontally oriented), and a min-
imum for both the peaks and troughs of the modulator.
In other words, the response that serves as the input to
the second-order linear filter is a frequency-doubled
version of the modulator. A pathway with a filter tuned
to the most clockwise-rotated texture element (say, the
diagonal upward ones) would not be frequency doubled.
But, the identity of this pathway will depend on the
degree of orientation modulation, which is precisely the
value varied in their experiments. Thus, this is a stimulus
that is exceedingly difficult to analyze in terms of the
back-pocket model.

We chose our stimulus for a simple characterization
in terms of the back-pocket model. The first-order
(carrier) content of the stimulus is bandpass in the
spatial frequency domain so that off-frequency-tuned
first-order channels are uninformative (as with the
stimuli of Sutter et al. (1995), and those of Kingdom
et al. (1995) when Gabor patches are used as texture
elements). The orientation content is varied between
vertical and horizontal only, so that the only relevant
channels are those tuned to one or the other of those
orientations (and they provide comparable, although
phase-inverted, demodulated output to the second-order
filter). As a result, the stimulus nearly completely iso-
lates a single first-order linear-filter stage, allowing us to
concentrate on the second-order linear filter(s) that it
feeds.

But, we do not know that the noise at the input to the
second-order filter is independent of the particular
modulator used. ‘‘Noise’’ is that characteristic of the
input to the second-order linear filter unrelated to and
independent of modulation contrast. The amplitude and
spectral characteristics of this noise limit detection of
the modulator. The carrier patterns are filtered noise
patterns and thus are random from trial to trial, adding
random noise to the demodulated pattern. If that noise
is additive, independent of modulation pattern or con-
trast, and has a flat spatial frequency spectrum, then the
results of our experiments can be used to interpret the
form and number of second-order filters in much
the same way as was done for first-order spatial filters.
But, the carrier-induced noise is unlikely to have all
these characteristics. For example, the nonlinearities
required for demodulation produce distortion products
resulting from an interaction between the carrier and
modulator. Hence, our results cannot be interpreted
without reference to a model of the processing of these
stimuli.

The most desirable such model is an ideal observer.
Our human observers were faced with equally likely
alternatives and received feedback as to whether their
responses were correct. The appropriate ideal observer
chooses the interval on each trial that has maximum
likelihood. Unfortunately, for such complex stimulus
construction as used here, the ideal observer is compu-

tationally formidable. As such, we have settled on
comparing our observers’ performance to an ‘‘idealized’’
observer, that is, to a computational model that al-
though not ideal, is likely to be close in performance to
the ideal and that is relatively easy to compute.

Our idealized observer processes a stimulus in three
stages. The first two stages are identical to the first two
stages of the back-pocket model. First, the stimulus is
filtered to emphasize one of the two constituent textures
(in our case, the vertical texture is emphasized). As we
know the bandpass characteristics (in spatial frequency
and orientation) that were used to generate the textures,
the same exact linear filter is used in the model. This
produces regions of high contrast where the texture is
predominantly vertical, and low contrast where it is
horizontal. A pointwise nonlinearity (x2) is then applied
to demodulate the signal, resulting in a large average
response in the regions of vertical texture. We use an
even nonlinearity so that both strong positive and
negative responses of the first-order linear filter are
used. Other even nonlinearities (e.g., fullwave rectifica-
tion) would likely have given similar results. The re-
sulting image is indeed similar to the modulator that
gave rise to the texture pattern, although quite noisy
(Fig. 8A).

Finally, the resulting image is cross-correlated with
the known signal (which is always fixed except for
contrast and spatial phase in any block of trials). Since
our patterns are one-dimensional, we first average the
values across each column of the demodulated image,
resulting in a one-dimensional function. This function is
cross correlated with the known signal (with the DC
removed) at every possible phase, and the maximum
cross correlation is calculated. Our stimulus window size
is not an integral multiple of the spatial period of our
stimuli, so we are forced to use explicit cross correlation
rather than, say, the power in the Fourier spectrum.
Also, since the expected signals were clipped at the edges
of the stimulus window, they had a nonzero mean (that
is, a DC component) that had to be removed as it in-
terfered with our idealized observer’s performance.

The idealized observer’s maximum cross-correlation
value was computed for each of the stimulus images
used in our experiments. Consider, for example, the
experiment used to determine modulation contrast sen-
sitivity at 0.5 cpd. The stimulus set consisted of 20
stimuli with zero modulation contrast, and 10 stimuli at
each of 12 nonzero modulation contrast levels. For a
given modulation contrast level c, the idealized ob-
server’s performance level was estimated as the pro-
portion of pairs of zero modulation contrast and c
modulation contrast stimuli for which the maximum
cross-correlation was larger for the c modulation con-
trast stimulus (out of the 200 possible such pairs). A
psychometric function was thus constructed for the
idealized observer, and thresholds and other statistics
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were calculated in exactly the same way as for the
human observers.

4.1. Modulation contrast sensitivity

Fig. 9A shows the second-order modulation contrast
sensitivity of our idealized observer. The function, un-
like that of our human observers, is not flat. In fact, it
shows increased sensitivity for both the lowest and
highest spatial frequencies tested. In Fig. 9B we plot the
average observer efficiency relative to the idealized ob-
server. This is the square of the ratio of the average
human observer sensitivity to that of the idealized ob-
server. It is the percentage of the modulation contrast
power that the idealized observer requires to achieve the
performance of the average human observer. Two
points are notable about this plot. First, since the per-
formance of the idealized observer is not independent of
spatial frequency (unlike the human observer modula-
tion CSFs in Fig. 5), efficiency turns out to be a band-
pass function of spatial frequency. That is, despite the
flat modulation CSFs we measured, the human observ-
ers appear to utilize the mid-range of modulator fre-
quencies more effectively than the highest and lowest
spatial frequencies tested. Second, for those mid-range
frequencies, the observer efficiency is somewhere be-
tween 10% and 20%. To the extent that our idealized
observer closely approximates that of the maximum
likelihood ideal observer (something we are unable to
check), these efficiencies are reasonably similar to those
seen for other mid-level vision tasks (such as letter dis-
crimination in noise; Parish & Sperling, 1991).

Why is the idealized observer’s performance depen-
dent on modulator spatial frequency? Fig. 8B shows the
idealized observer’s response to a zero modulation
contrast stimulus after filtering and pointwise nonlin-
earity. Note that this noisy image has evident modula-
tions of contrast across the pattern at relatively low
spatial frequencies. These low-frequency patterns are in
response to local contrast modulations present in the
vertical noise pattern used to generate the stimuli.
Kov�aacs and Feh�eer (1997) pointed out that bandpass
filtered noise patterns contain low frequency, second-
order contrast modulations that depend on the spatial
frequency- and orientation-bandwidth of the noise pat-
tern in a predictable way. These contrast modulations
are analogous to the contrast envelopes of sums of sine
wave grating patterns with similar spatial frequency (i.e.,
‘‘beat’’ patterns) except that they are irregular. This
modulation pattern acts like a noise mask through
which the observer is required to detect the grating
stimulus (after demodulation).

Fig. 8C shows the spectral power for vertically ori-
ented components averaged over 20 filtered and squared
images like that in Fig. 8B. The spectral power has a
local peak at 8 cpd, which shows the frequency doubling
of the 4 cpd carrier noise, visible in Fig. 8B, due to the
even nonlinearity we employ. The spectrum also shows
a lowpass component with a steep spectral slope above

Fig. 8. Idealized observer behavior. (A) The idealized observer applies

a linear filter tuned to the vertically oriented texture used to generate

the stimuli, followed by a pointwise nonlinearity (x2). Here is the result

of those two operations applied to the stimulus shown in Fig. 2C,

resulting in a noisy demodulation of the stimulus. (B) The analogous

image for the zero modulation contrast stimulus of Fig. 2B. (C) The

Fourier spectrum of the vertically oriented components was averaged

over 20 zero modulation contrast stimuli including (B) and normalized

to a peak value of 1. Although not shown here, note that the standard

deviation of the spectral power across these same 20 images follows the

same function of spatial frequency as the average power.
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0.8 cpd. That is, above 0.8 cpd the noise power
decreases, allowing the idealized observer’s perfor-
mance to improve at 2 cpd. However, there is nothing in
this noise spectrum to indicate why the idealized
observer also performs relatively well with the 0.0625
cpd stimuli. This latter performance must therefore
result from other interactions between the modulator
and this contrast noise or other aspects of the stimulus
such as edge effects from the hard-edged stimulus win-
dow.

4.2. Increment threshold

The variability in the model’s response to a particular
class of stimuli is generally proportional to the average
response. We have seen this in the model output statis-
tics (i.e., the statistics of the maximum correlation value
across the set of stimuli used in the experiments, as a
function of modulation contrast). It is also clear from
the statistics of the contrast modulation noise in the
idealized observer output after filtering and pointwise
nonlinearity. Fig. 8C shows the average spectral power
of the response to 20 unmodulated texture images, but
the standard deviation of the spectral power has the
same form. These characteristics lead to an idealized
observer increment threshold function that, although a
bit noisy over the small sample of images used, is
essentially flat (Fig. 6A, dotted line). Relative to our
idealized observer, as a result, efficiency improves
(although noisily) as pedestal modulation contrast in-
creases (Fig. 6B). Interestingly, this efficiency ap-
proaches 100% for the higher pedestal values. This is a
strong clue that our idealized observer is, in fact, sub-
ideal.

4.3. Summation

The interpretation of the results of sub-threshold
summation experiments, outlined above, rests on the
assumption of an observer who uses the best detector (in
this case, second-order receptive field profile) among a
fixed set of detectors to which s/he has access. What
would we predict for an ideal observer, that is, an ob-
server that could tailor the second-order filter to the
particular stimulus used in any given block of trials?
Such an observer would construct a different template
for each condition in the summation experiment (cor-
responding to the particular mix of the two summands
displayed). When the two summands were identical,
then by definition perfect summation would result. For
any other combination of summands, and assuming a
flat noise spectrum limiting performance, performance is
a function of signal power. We use orthogonal (i.e.,
uncorrelated) summands. Hence, for any such pair of
summands, one would predict thresholds for different
directions in the summation square to have equal vector
length (equal power), resulting in a circular threshold
contour. Such a threshold contour results in a summa-
tion coefficient of 0.43. By this logic, one would predict
ideal summation of 0.43 independent of the frequency of
the variable summand (except when it is identical to the
fixed summand).

Fig. 7C (left-hand panel) shows the summation co-
efficient as a function of summand spatial frequency for
our idealized observer as the dashed curve. The indi-
vidual estimates were computed using the stimuli that
appeared in the analogous summation experiment for
observer IO. Since the ideal observer did not have the
same thresholds for the single sine wave components as
IO had, when the axes were scaled as multiples of

Fig. 9. Idealized observer modulation CSF and efficiency. (A) The second-order modulation contrast sensitivity function of an idealized observer

that demodulates the stimulus by use of a linear filter followed by squaring, and then cross-correlates the stimuli with the target modulator grating. It

chooses the interval with the larger peak correlation value. Note the different range of the ordinate compared to Fig. 5. Unlike the human observers

(Fig. 5A), the idealized observer modulation CSF is not flat. (B) The average efficiency, i.e., the square of the ratio between the average sensitivity of

the four observers in Fig. 5A and idealized observer sensitivity. The efficiency is bandpass.
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threshold, the summation conditions for the idealized
observer were no longer located at angles of 22.5, 45 and
67 deg in the idealized observer’s summation plots. The
idealized observer does indeed show a narrower band-
width than the human observers in this task, although
not infinitely narrow as predicted. In any case, the dif-
ference between the summation plots for the idealized
observer and our human observers is reassuring. It in-
dicates that the summation experiment does indeed in-
dicate something about how observers perform this
detection task, and not simply that the information
content of the summation stimuli has this property.
Thus, we are on reasonably firm ground in interpreting
the results of the summation experiments as indications
that second-order filters used to accomplish that task
have a bandwidth of an octave or so.

5. Discussion

We have described a series of experiments intended to
characterize the properties of the second-order linear
filters used to detect modulations in visual texture. We
found second-order modulation contrast sensitivity to
be nearly flat and scale invariant, although the modu-
lation CSF was bandpass when converted to efficiency
relative to our idealized observer. The other groups that
have measured second-order modulation contrast sen-
sitivity (Kingdom et al., 1995; Sutter et al., 1995) have
found a bandpass function. This difference between our
results and theirs surely stems from the different types of
stimuli used. We pointed out that our choice of stimuli
may be easier to interpret in the context of the back-
pocket model. The increment threshold function showed
an improvement with increasing pedestal modulation
contrast that could not be attributed to stimulus infor-
mation content (i.e., that was not evident in the results
of the idealized observer). Finally, sub-threshold sum-
mation experiments indicated a moderate channel
bandwidth that was substantially wider than would have
been found had the observer used a matched filter in
each condition. In summary, the results indicate that
second-order modulation detection and, by extension,
other spatial, second-order tasks such as texture segre-
gation, may be carried out by multiple, second-order,
spatial frequency-tuned mechanisms analogous in their
operation to those that have been well established in the
first-order, luminance contrast case.
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